scholarly journals DYNAMICS OF A TWO DEGREE OF FREEDOM VIBRO-IMPACT SYSTEM WITH MULTIPLE MOTION LIMITING CONSTRAINTS

2004 ◽  
Vol 14 (01) ◽  
pp. 119-140 ◽  
Author(s):  
D. J. WAGG ◽  
S. R. BISHOP

We consider the dynamics of impact oscillators with multiple degrees of freedom subject to more than one motion limiting constraint or stop. A mathematical formulation for modeling such systems is developed using a modal approach including a modal form of the coefficient of restitution rule. The possible impact configurations for an N degree of freedom system are considered, along with definitions of the impact map for multiply constrained systems. We consider sticking motions that occur when a single mass in the system becomes stuck to an impact stop, and discuss the computational issues related to computing such solutions. Then using the example of a two degree of freedom system with two constraints we describe exact modal solutions for the free flight and sticking motions which occur in this system. Numerical examples of sticking orbits for this system are shown and we discuss identifying the region, S in phase space where these orbits exist. We use bifurcation diagrams to indicate differing regimes of vibro-impacting motion for two different cases; firstly when the stops are both equal and on the same side (i.e. the same sign) and secondly when the stops are unequal and of opposing sign. For these two different constraint configurations we observe qualitatively different dynamical behavior, which is interpreted using impact mappings and two-dimensional parameter space.

Author(s):  
Jun Gong ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Shizhao Shen ◽  
Da Qaio ◽  
...  

To investigate the variability of ground motion characteristics (GMC) with the angle of seismic incidence (ASI) and the impact of seismic incident directionality on structural responses, first, a large-scale database of recorded ground motions was used to analyze the causes of GMC variability due to the seismic incident directionality effect (SIDE). Then a single-mass bi-degree-of-freedom system (SM-BDOF-S) with different types of symmetrical sections was selected to explore the influence mechanism of SIDE on the seismic responses. The results illustrated that the GMC has substantial variability with the ASI, which is independent of the earthquake source, propagation distance, and site condition, and exhibits complex random characteristics. Additionally, a classification method for ground motions is proposed based on this GMC variability to establish a criterion for selecting ground motions in seismic analysis considering the SIDE. Moreover, for an SM-BDOF-S, the response spectral plane is proposed to explain the transition behavior of spectral responses that are very similar among different stiffness ratios, but divergent for different types of ground motions. The influence of SIDE on structures is determined by their stiffness and stiffness ratio in the [Formula: see text]- and [Formula: see text]-directions, as well as the type of ground motion.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250110 ◽  
Author(s):  
GUILIN WEN ◽  
HUIDONG XU ◽  
LU XIAO ◽  
XIAOPING XIE ◽  
ZHONG CHEN ◽  
...  

Vibro-impact systems with intermittent contacts are strongly nonlinear. The discontinuity of impact can give rise to rich nonlinear dynamic behaviors and bring forth challenges in the modeling and analysis of this type of nonsmooth systems. The dynamical behavior of a two-degree-of-freedom vibro-impact system is investigated experimentally in this paper. The experimental apparatus is composed of two spring-linked oscillators moving on a lead rail. One of the two oscillators connected to an excitation system intermittently impacts with a spherical obstacle fixed on the thick steel wall. With different gap sizes between the impacting oscillator and the obstacle, the dynamical behaviors are investigated by changing the excitation frequencies. The experimental results show periodic, grazing and chaotic dynamical behaviors of the vibro-impact system.


Author(s):  
Karen de Lolo Guilherme ◽  
Jose´ Manoel Balthazar ◽  
Paulo Roberto Gardel Kurka ◽  
Masayoshi Tsuchida

The present paper studies a system comprised of two blocks connected by springs and dampers, and a DC motor with limited power supply fixed on a block, characterizing a non-ideal problem. This DC motor exciting the system causes interactions between the motor and the structure supporting it. Because of that, the non-ideal mathematical formulation of the problem has one and a half extra degree of freedom than the ideal one. A suitable choice of physical parameters leads to internal resonance conditions, that is, its natural frequencies are multiple of each other, by a known integer quantity. The purpose here is to study the dynamic behavior of the system using an analytical method based on perturbation techniques. The literature shows that the averaging method is the more flexible method concerning non-ideal problems. Summarizing, an steady state solution in amplitude and phase coordinates was obtained with averaging method showing the dependence of the structure amplitudes with the rotation frequency of the motor. Moreover, this solution shows that on of the amplitude coordinates has influence in the determination of the stationary rotation frequency. The analytical solution obtained shows the presence of the rotation frequency in expressions representing the oscillations of the structure, and the presence of amplitude coordinates in expressions describing the dynamic motion of the DC motor. These characteristics show the influence not only of the motor on structure but also of the response of the structure on dynamical behavior of the motor.


Author(s):  
David Wagg

In this paper we consider the dynamics of compliant mechanical systems subject to combined vibration and impact forcing. Two specific systems are considered; a two degree of freedom impact oscillator and a clamped-clamped beam. Both systems are subject to multiple motion limiting constraints. A mathematical formulation for modelling such systems is developed using a modal approach including a modal form of the coefficient of restitution rule. The possible impact configurations for an N degree of freedom lumped mass system are considered. We then consider sticking motions which occur when a single mass in the system becomes stuck to an impact stop, which is a form of periodic localization. Then using the example of a two degree of freedom system with two constraints we describe exact modal solutions for the free flight and sticking motions which occur in this system. A numerical example of a sticking orbit for this system is shown and we discuss identifying a nonlinear normal modal basis for the system. This is achieved by extending the normal modal basis to include localized modes. Finally preliminary experimental results from a clamped-clamped vibroimpacting beam are considered and a simplified model discussed which uses an extended modal basis including localized modes.


1970 ◽  
Vol 12 (4) ◽  
pp. 288-300 ◽  
Author(s):  
M. P. Paidoussis ◽  
E. B. Deksnis

A general theory is presented for the dynamics of nth-degree-of-freedom articulated (lumped flexibility) models of cantilevers conveying fluid, of which the two-degree-of-freedom model of a column subjected to follower forces (first investigated by Ziegler) is a particular case. The ability of the articulated system to predict the dynamical behaviour of the continuous system modelled is investigated, and in particular the paradox that, whereas the continuous system is subject to only oscillatory instability (at sufficiently high flow), the model is generally subject to both oscillatory and buckling instabilities, and sometimes only to the latter. Complex frequency calculations show that buckling is associated with the higher modes of the articulated system, which, irrespective of the number of degrees of freedom, do not model well the corresponding modes of the continuous system. The critical flow velocities for buckling and oscillatory instabilities are calculated extensively, the latter showing good convergence to the corresponding values of the continuous system. The theory is supported by a set of experiments. Agreement between theory and experiment is satisfactorily good.


Robotica ◽  
2018 ◽  
Vol 36 (7) ◽  
pp. 994-1018 ◽  
Author(s):  
Wael Saab ◽  
William S. Rone ◽  
Pinhas Ben-Tzvi

SUMMARYThis paper presents the design, analysis and experimentation of a Discrete Modular Serpentine Tail (DMST). The mechanism is envisioned for use as a robotic tail integrated onto mobile legged robots to provide a means, separate from the legs, to aid stabilization and maneuvering for both static and dynamic applications. The DMST is a modular two-degree-of-freedom (DOF) articulated, under-actuated mechanism, inspired by continuum and serpentine robotic structures. It is constructed from rigid links with cylindrical contoured grooves that act as pulleys to route and maintain equal displacements in antagonistic cable pairs that are connected to a multi-diameter pulley. Spatial tail curvatures are produced by adding a roll-DOF to rotate the bending plane of the planar tail curvatures. Kinematic and dynamic models of the cable-driven mechanism are developed to analyze the impact of trajectory and design parameters on the loading profiles transferred through the tail base. Experiments using a prototype are performed to validate the forward kinematic and dynamic models, determine the mechanism's accuracy and repeatability, and measure the mechanism's ability to generate inertial loading.


Author(s):  
Albert C. J. Luo ◽  
Tingting Mao

In this paper, all possible stick and non-stick motions in such a friction-induced oscillator are discussed and the corresponding analytical conditions for the stick and non-stick motions to the traveling belts are presented. The mapping structures are introduced and the periodic motions of the two oscillators are presented through the corresponding mapping structure. Velocity and force responses for stick and non-stick, periodic motions in the 2-DOF friction-induced system are illustrated for a better understanding of the motion complexity in such many degrees of freedom systems.


In this chapter the theoretical equations for fluctuating pressures due to vertical and streamwise gate motions developed in Chapters 4 and 5 are used to derive equations of motion for long-span gates with underflow, overflow and simultaneous over- and underflow. Theoretical development of analysis methods is supported by laboratory and full-scale measurements. Specifically, this chapter considers long-span gate instabilities including one degree-of-freedom vibration of gates with underflow and free discharge, one degree-of-freedom vibration of a gate with submerged discharge and vortex shedding excitation, a two degree-of-freedom vibration of long-span gates with only underflow, and two degrees-of-freedom vibration of long-span gates with simultaneous over and underflow. A method is developed to predict pressure loading on the crest of the gate with overflow.


1988 ◽  
Vol 110 (2) ◽  
pp. 168-174 ◽  
Author(s):  
S. D. Eppinger ◽  
D. N. O’Connor ◽  
W. P. Seering ◽  
D. N. Wormley

High-performance pantograph design requires control of pantograph dynamic performance. Many pantograph dynamic models developed to aid in the design process have employed two degrees of freedom, one for the head mass and one for the frame. In this paper, the applicability of these models to symmetric and asymmetric pantograph designs is reviewed. Two degree-of-freedom models have been shown to be appropriate to represent a number of symmetric pantograph designs. To represent the asymmetric designs considered in this paper, an additional degree of freedom representing frame dynamics has been introduced to yield a three degree-of-freedom nonlinear dynamic performance model. The model has been evaluated with experimental data obtained from laboratory dynamic testing of an asymmetric pantograph.


2012 ◽  
Vol 241-244 ◽  
pp. 1880-1884
Author(s):  
Rui Xu ◽  
Qiang Chen ◽  
Guo Lai Yang

This paper is concerned with the identification problem of two degree of freedom robot arm’s joints’ time-varying stiffness. The dynamic equation of two degrees of freedom robot arm can be obtained by using analytical mechanics method. Then by choosing limited memory least square method, time-varying stiffness can be identified. Finally, the calculative stiffness is compared to the “real” stiffness which is simulated in ADAMS. The whole process shows that the robot arm’s dynamic model and the method of identification are both effective.


Sign in / Sign up

Export Citation Format

Share Document