Chaos: An Ecological Reality?

1998 ◽  
Vol 08 (06) ◽  
pp. 1325-1333 ◽  
Author(s):  
Ranjit Kumar Upadhyay ◽  
S. R. K. Iyengar ◽  
Vikas Rai

Deterministic chaos has been studied extensively in various fields. Some of the ideas emerging out of these studies have been put to novel applications. However, it is unknown whether natural ecological systems support chaotic dynamics. There is no concrete evidence which suggests that ecosystem evolution is chaotic in certain situations. This is very intriguing because ecosystems do possess all the necessary qualifications to be able to support such a dynamical behavior. The present paper attempts to answer the above question with the help of a few systems modeling different but very common ecological situations. A new methodology for the analysis of a class of model ecological systems is presented. Simulation experiments suggest that natural terrestrial systems are not suitable candidates where one should look for chaos. Additionally, our study also points out that the failure of attempts to observe chaos in natural populations might have resulted because biological interactions are not conducive for such a behavior to be supported. The cause of these failures may not be the poor data quality or demerits in the analysis techniques.

2004 ◽  
Vol 14 (10) ◽  
pp. 3671-3678
Author(s):  
G. P. BYSTRAI ◽  
S. I. IVANOVA ◽  
S. I. STUDENOK

A second-order nonlinear differential equation with an aftereffect for the density of a thin homogeneous layer on a liquid and vapor interface is considered. The acts of evaporation and condensation of molecules, which are regarded as periodic "impacts", excite the layer. The mentioned NDE is integrated over a finite time interval to find a 2D (two-dimensional) mapping whose numerical solution describes the chaotic dynamics of density and pressure in time. The algorithms of constructing bifurcation diagrams, Lyapunov's exponents and Kolmogorov's entropy for systems with first-order, second-order phase transitions and Van der Waals' systems were elaborated. This approach allows to associate such concepts as phase transition, deterministic chaos and nonlinear processes. It also allows to answer a question whether deterministic chaos occurs in systems with phase transitions and how fast the information about starting conditions is lost within them.


2020 ◽  
Vol 30 (09) ◽  
pp. 2030025
Author(s):  
M. V. Tchakui ◽  
P. Woafo ◽  
Ch. Skokos

We characterize the dynamical states of a piezoelectric micrcoelectromechanical system (MEMS) using several numerical quantifiers including the maximum Lyapunov exponent, the Poincaré Surface of Section and a chaos detection method called the Smaller Alignment Index (SALI). The analysis makes use of the MEMS Hamiltonian. We start our study by considering the case of a conservative piezoelectric MEMS model and describe the behavior of some representative phase space orbits of the system. We show that the dynamics of the piezoelectric MEMS becomes considerably more complex as the natural frequency of the system’s mechanical part decreases. This refers to the reduction of the stiffness of the piezoelectric transducer. Then, taking into account the effects of damping and time-dependent forces on the piezoelectric MEMS, we derive the corresponding nonautonomous Hamiltonian and investigate its dynamical behavior. We find that the nonconservative system exhibits a rich dynamics, which is strongly influenced by the values of the parameters that govern the piezoelectric MEMS energy gain and loss. Our results provide further evidences of the ability of the SALI to efficiently characterize the chaoticity of dynamical systems.


2015 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Берестин ◽  
D. Berestin ◽  
Игуменов ◽  
D. Igumenov ◽  
Рассадина ◽  
...  

The results of the stochastic analysis of postural tremor (as alleged involuntary movement) and tapping (as supposedly voluntary movement) are considered in a comparative perspective. It is proved that the stochastic analysis of the results of chaotic dynamics in tremorogramms and tapping does not give significant differences (absence of voluntariness). Typically, all samples are significantly different and it is impossible to distinguish subjects in their tremorogramms or tapingramm. The significant differences between sites of tremorogramms in terms of a normal distribution or a non-parametric distribution are demonstrated. A continuous variation of the distribution function is observed: parametric distribution shifts to non-parametric distribution, but among themselves they (distribution function) are all different. It is well known that the unpredicta-bility and continuing changes in the state are characteristic feature of chaos. The evidence of special kind of chaos in biosystems which differs significantly from the deterministic chaos of Tom – Ar-nold is given.


2015 ◽  
Vol 23 (supp01) ◽  
pp. S135-S149 ◽  
Author(s):  
FERNANDO CÓRDOVA-LEPE ◽  
GONZALO ROBLEDO ◽  
JAVIER CABRERA-VILLEGAS

This note gives an overview on basic mathematical models describing the population dynamics of a single species whose vital dynamics has different time scales. We present five cases combining two time–scales with Malthusian growth in at least one scale. The dynamical behavior shows a progressive complexity, from "naive" to chaotic dynamics (in the Li–Yorke's sense). In addition, some open problems and new results are presented.


1987 ◽  
Vol 42 (2) ◽  
pp. 136-142 ◽  
Author(s):  
H. Herzel ◽  
W. Ebeling ◽  
Th. Schulmeister

Biochemical models capable of sustained oscillations and deterministic chaos are investigated. Chaos is characterized by exponential separation of near-by trajectories in the long-term average. However, we observed rather large deviations from purely exponential separation termed "nonuniformity". A quantitative description and consequences of nonuniformity are discussed.Furthermore, the influence of short-correlated noise is treated using next-amplitude maps and Lyapunov exponents. Drastic amplification of fluctuations in non-chaotic systems and relative robustness of chaos were found.


2009 ◽  
Vol 19 (10) ◽  
pp. 3169-3234 ◽  
Author(s):  
RANJIT KUMAR UPADHYAY

We examine and assess deterministic chaos as an observable. First, we present the development of model ecological systems. We illustrate how to apply the Kolmogorov theorem to obtain limits on the parameters in the system, which assure the existence of either stable equilibrium point or stable limit cycle behavior in the phase space of two-dimensional (2D) dynamical systems. We also illustrate the method of deriving conditions using the linear stability analysis. We apply these procedures on some basic existing model ecological systems. Then, we propose four model ecological systems to study the dynamical chaos (chaos and intermittent chaos) and cycles. Dynamics of two predation and two competition models have been explored. The predation models have been designed by linking two predator–prey communities, which differ from one another in one essential way: the predator in the first is specialist and that in the second is generalist. The two competition models pertain to two distinct competition processes: interference and exploitative competition. The first competition model was designed by linking two predator–prey communities through inter-specific competition. The other competition model assumes that a cycling predator–prey community is successfully invaded by a predator with linear functional response and coexists with the community as a result of differences in the functional responses of the two predators. The main criterion behind the selection of these two model systems for the present study was that they represent diversity of ecological interactions in the real world in a manner which preserves mathematical tractability. For investigating the dynamic behavior of the model systems, the following tools are used: (i) calculation of the basin boundary structures, (ii) performing two-dimensional parameter scans using two of the parameters in the system as base variables, (iii) drawing the bifurcation diagrams, and (iv) performing time series analysis and drawing the phase space diagrams. The results of numerical simulation are used to distinguish between chaotic and cyclic behaviors of the systems.The conclusion that we obtain from the first two model systems (predation models) is that it would be difficult to capture chaos in the wild because ecological systems appear to change their attractors in response to changes in the system parameters quite frequently. The detection of chaos in the real data does not seem to be a possibility as what is present in ecological systems is not robust chaos but short-term recurrent chaos. The first competition model (interference competition) shares this conclusion with those of predation ones. The model with exploitative competition suggests that deterministic chaos may be robust in certain systems, but it would not be observed as the constituent populations frequently execute excursions to extinction-sized densities. Thus, no matter how good the data characteristics and analysis techniques are, dynamical chaos may continue to elude ecologists. On the other hand, the models suggest that the observation of cyclical dynamics in nature is the most likely outcome.


1996 ◽  
Vol 06 (11) ◽  
pp. 2031-2045 ◽  
Author(s):  
TAKAYA MIYANO

Diagnostic methods for discovering deterministic chaos based on the instability and the parallelness of nearby trajectories generated from a time series in phase space are applied to numerical time series contaminated with additive random noise. The diagnostic algorithm based on nonlinear forecasting is prone to be fooled when handling chaotic data including observational noise. Such a misdiagnosis can be circumvented by estimating the degrees of parallelness of neighboring trajectories in the phase space. Dynamical properties of global temperature variations and voice signals of Japanese vowel /a/ are examined by the combinational use of the diagnostic algorithms.


2014 ◽  
Vol 24 (10) ◽  
pp. 1430027 ◽  
Author(s):  
Morgan R. Frank ◽  
Lewis Mitchell ◽  
Peter Sheridan Dodds ◽  
Christopher M. Danforth

The Lorenz '96 model is an adjustable dimension system of ODEs exhibiting chaotic behavior representative of the dynamics observed in the Earth's atmosphere. In the present study, we characterize statistical properties of the chaotic dynamics while varying the degrees of freedom and the forcing. Tuning the dimensionality of the system, we find regions of parameter space with surprising stability in the form of standing waves traveling amongst the slow oscillators. The boundaries of these stable regions fluctuate regularly with the number of slow oscillators. These results demonstrate hidden order in the Lorenz '96 system, strengthening the evidence for its role as a hallmark representative of nonlinear dynamical behavior.


1987 ◽  
Vol 42 (12) ◽  
pp. 1458-1460
Author(s):  
Gerold Baier ◽  
Klaus Wegmann

Spontaneous oscillations occur during the oxidation of aniline with bromate in sulfuric acid (a Körös-Orban System). In a continuous flow, stirred tank reactor besides a simple relaxation oscillation of large amplitude, a small amplitude oscillation of higher frequency was observed, so were various dynamical phenomena which can be understood as a combination of the two simple oscillations. For some regions of parameter space, the appearance of deterministic chaos seems probable. The role of metal impurities is discussed.


Sign in / Sign up

Export Citation Format

Share Document