A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES

2002 ◽  
Vol 12 (03) ◽  
pp. 407-430 ◽  
Author(s):  
J. D. HUMPHREY ◽  
K. R. RAJAGOPAL

Not long ago it was thought that the most important characteristics of the mechanics of soft tissues were their complex mechanical properties: they often exhibit nonlinear, anisotropic, nearly incompressible, viscoelastic behavior over finite strains. Indeed, these properties endow soft tissues with unique structural capabilities that continue to be extremely challenging to quantify via constitutive relations. More recently, however, we have come to appreciate an even more important characteristic of soft tissues, their homeostatic tendency to adapt in response to changes in their mechanical environment. Thus, to understand well the biomechanical properties of a soft tissue, we must not only quantify their structure and function at a given time, we must also quantify how their structure and function change in response to altered stimuli. In this paper, we introduce a new constrained mixture theory model for studying growth and remodeling of soft tissues. The model melds ideas from classical mixture and homogenization theories so as to exploit advantages of each while avoiding particular difficulties. Salient features include the kinetics of the production and removal of individual constituents and recognition that the neighborhood of a material point of each constituent can have a different, evolving natural (i.e. stress-free) configuration.

Author(s):  
P. Mythravaruni ◽  
Parag Ravindran

Mechanical loading induces changes in the structure and function of soft tissue. Growth and remodeling results from the production and removal of constituents. We consider a tissue constituted of elastin and collagen. The collagen turns over at a much higher rate than elastin. In this work we propose a two-constituent, constrained mixture model for this soft tissue. One constituent is modeled as a viscoelastic material and the other as an elastic material. It is assumed that the collagen turns over depending on the stress applied and the elastin does not turn over. The standard mixture theory approach is followed and the balance equations are set-up. The model is studied in simple uni-axial loading to test its efficacy.


2009 ◽  
Vol 09 (02) ◽  
pp. 243-257 ◽  
Author(s):  
J. D. HUMPHREY

Arteries exhibit a remarkable ability to adapt in response to sustained alterations in hemodynamic loading as well as to disease, injury, and clinical treatment. A better understanding of such adaptations will be aided greatly by formulating, testing, and refining appropriate theoretical frameworks for modeling the biomechanics and associated mechanobiology. The goal of this brief review is to highlight some recent developments in the use of a constrained mixture theory of arterial growth and remodeling, with particular attention to the requisite constitutive relations, and to highlight future directions of needed research.


2020 ◽  
Author(s):  
Hamidreza Gharahi ◽  
Daniel A. Beard ◽  
C. Alberto Figueroa ◽  
Seungik Baek

AbstractCoronary autoregulation is a short-term response manifested by a relatively constant flow over a wide range of perfusion pressures for a given metabolic state. This phenomenon is thought to be facilitated through a combination of mechanisms, including myogenic, shear dependent, and metabolic controls. The study of coronary autoregulation is challenging due to the coupled nature of the mechanisms and their differential effects through the coronary tree. In this paper, we developed a novel framework to study coronary autoregulation based on the constrained mixture theory. This structurally-motivated autoregulation model required calibration of anatomical and structural parameters of coronary trees via a homeostatic optimization approach using extensive literature data. Autoregulation was then simulated for two different coronary trees: subepicardial and subendocardial. The structurally calibrated model reproduced available baseline hemodynamics and autoregulation data for each coronary tree. The autoregulation analysis showed that the diameter of the intermediate and small arterioles varies the most in response to changes in perfusion pressure. Finally, we demonstrated the utility of the model in two application examples: 1) response to drops in epicardial pressure, and 2) response to drug infusion in the coronary arteries. The proposed structurally-motivated model could be extended to study long-term growth and remodeling in the coronary circulation in response to hypertension, atherosclerosis, etc.Key pointsCoronary autoregulation is defined as the capability of the coronary circulation to maintain the blood supply to the heart over a range of perfusion pressures. This phenomenon is facilitated through intrinsic mechanisms that control the vascular resistance by regulating the mechanical function of smooth muscle cells. Understanding the mechanisms involved in coronary autoregulation is one of the most fundamental questions in coronary physiology.This paper presents a structurally-motivated coronary autoregulation model that uses a nonlinear continuum mechanics approach to account for the morphometry and vessel wall composition in two coronary trees in the subepicardial and subendocardial layers.The model is calibrated against diverse experimental data from literature and is used to study heterogeneous autoregulatory response in the coronary trees. This model drastically differs from previous models, which relied on lumped parameter model formulations, and is suited to the study of long-term pathophysiological growth and remodeling phenomena in coronary vessels.


2017 ◽  
Vol 14 (1) ◽  
pp. 41-47
Author(s):  
Alla Y. Tokmakova ◽  
Dar'ya N. Egorova ◽  
Lyudmila P. Doronina

Diabetes mellitus is one of the most common chronic diseases in the world. According to the International Diabetes Federation (IDF), by 2035 the number of diabetes patients will reach 592 million people. Various disorders of the structure and function of the soft tissues and skeleton of the lower extremities is the most common reason that patients seek medical care. The paper presents the modern concept of the pathogenesis, diagnosis, therapeutic and prevention tactics used in the specialized endocrinological and surgical clinics.


Author(s):  
A. Valentín ◽  
J. D. Humphrey

Evolving constituent composition and organization are important determinants of the biomechanical behaviour of soft tissues. In arteries, vascular smooth muscle cells and fibroblasts continually produce and degrade matrix constituents in preferred modes and at altered rates in response to changing mechanical stimuli. Smooth muscle cells similarly exhibit vasoactive changes that contribute to the control of overall structure, function and mechanical behaviour. Constrained mixture models provide a useful framework in which to quantify arterial growth and remodelling for they can account for cell-mediated changes in individual structurally significant constituents. Our simulations show that the combined effects of changing mass density turnover and vasoactivity, as well as the prestretch at which constituents are incorporated within extant matrix, are essential to capture salient features of bounded arterial growth and remodelling. These findings emphasize the importance of formulating biologically motivated constitutive relations in any theory of growth and remodelling and distinct advantages of the constrained mixture approach, in particular.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Sign in / Sign up

Export Citation Format

Share Document