MATHEMATICAL MODELLING OF CANCER CELL INVASION OF TISSUE: THE ROLE OF THE UROKINASE PLASMINOGEN ACTIVATION SYSTEM

2005 ◽  
Vol 15 (11) ◽  
pp. 1685-1734 ◽  
Author(s):  
M. A. J. CHAPLAIN ◽  
G. LOLAS

The growth of solid tumours proceeds through two distinct phases: the avascular and the vascular phase. It is during the latter stage that the insidious process of cancer invasion of peritumoral tissue can and does take place. Vascular tumours grow rapidly allowing the cancer cells to establish a new colony in distant organs, a process that is known as metastasis. The progression from a single, primary tumour to multiple tumours in distant sites throughout the body is known as the metastatic cascade. This is a multistep process that first involves the over-expression by the cancer cells of proteolytic enzyme activity, such as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs). uPA itself initiates the activation of an enzymatic cascade that primarily involves the activation of plasminogen and subsequently its matrix degrading protein plasmin. Degradation of the matrix then enables the cancer cells to migrate through the tissue and subsequently to spread to secondary sites in the body. In this paper we consider a mathematical model of cancer cell invasion of tissue (extracellular matrix) which focuses on the role of the plasminogen activation system. The model consists of a system of reaction-diffusion-taxis partial differential equations describing the interactions between cancer cells, urokinase plasminogen activator (uPA), uPA inhibitors, plasmin and the host tissue. The focus of the modelling is on the spatio-temporal dynamics of the uPA system and how this influences the migratory properties of the cancer cells through random motility, chemotaxis and haptotaxis. The results obtained from numerical computations carried out on the model equations produce rich, dynamic heterogeneous spatio-temporal solutions and demonstrate the ability of rather simple models to produce complicated dynamics, all of which are associated with tumour heterogeneity and cancer cell progression and invasion.

2020 ◽  
Vol 26 (1) ◽  
pp. 4
Author(s):  
Antonino Amoddeo

A mathematical model describing the interaction of cancer cells with the urokinase plasminogen activation system is represented by a system of partial differential equations, in which cancer cell dynamics accounts for diffusion, chemotaxis, and haptotaxis contributions. The mutual relations between nerve fibers and tumors have been recently investigated, in particular, the role of nerves in the development of tumors, as well neurogenesis induced by cancer cells. Such mechanisms are mediated by neurotransmitters released by neurons as a consequence of electrical stimuli flowing along the nerves, and therefore electric fields can be present inside biological tissues, in particular, inside tumors. Considering cancer cells as negatively charged particles immersed in the correct biological environment and subjected to an external electric field, the effect of the latter on cancer cell dynamics is still unknown. Here, we implement a mathematical model that accounts for the interaction of cancer cells with the urokinase plasminogen activation system subjected to a uniform applied electric field, simulating the first stage of cancer cell dynamics in a three-dimensional axial symmetric domain. The obtained numerical results predict that cancer cells can be moved along a preferred direction by an applied electric field, suggesting new and interesting strategies in cancer therapy.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 388
Author(s):  
Brice Chanez ◽  
Kevin Ostacolo ◽  
Ali Badache ◽  
Sylvie Thuault

Regulation of microtubule dynamics by plus-end tracking proteins (+TIPs) plays an essential role in cancer cell migration. However, the role of +TIPs in cancer cell invasion has been poorly addressed. Invadopodia, actin-rich protrusions specialized in extracellular matrix degradation, are essential for cancer cell invasion and metastasis, the leading cause of death in breast cancer. We, therefore, investigated the role of the End Binding protein, EB1, a major hub of the +TIP network, in invadopodia functions. EB1 silencing increased matrix degradation by breast cancer cells. This was recapitulated by depletion of two additional +TIPs and EB1 partners, APC and ACF7, but not by the knockdown of other +TIPs, such as CLASP1/2 or CLIP170. The knockdown of Focal Adhesion Kinase (FAK) was previously proposed to similarly promote invadopodia formation as a consequence of a switch of the Src kinase from focal adhesions to invadopodia. Interestingly, EB1-, APC-, or ACF7-depleted cells had decreased expression/activation of FAK. Remarkably, overexpression of wild type FAK, but not of FAK mutated to prevent Src recruitment, prevented the increased degradative activity induced by EB1 depletion. Overall, we propose that EB1 restricts invadopodia formation through the control of FAK and, consequently, the spatial regulation of Src activity.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2745
Author(s):  
Miran Jeong ◽  
Yi-Yue Wang ◽  
Ju-Yeon Choi ◽  
Myong-Cheol Lim ◽  
Jung-Hye Choi

In the tumor microenvironment, macrophages have been suggested to be stimulated by tumor cells, becoming tumor-associated macrophages that promote cancer development and progression. We examined the effect of these macrophages on human ovarian cancer cell invasion and found that conditioned medium of macrophages stimulated by ovarian cancer cells (OC-MQs) significantly increased cell invasion. CC chemokine ligand 7 (CCL7) expression and production were significantly higher in OC-MQs than in the control macrophages. Peritoneal macrophages from patients with ovarian cancer showed higher CCL7 expression levels than those from healthy controls. Inhibition of CCL7 using siRNA and neutralizing antibodies reduced the OC-MQ-CM-induced ovarian cancer cell invasion. CC chemokine receptor 3 (CCR3) was highly expressed in human ovarian cancer cells, and a specific inhibitor of this receptor reduced the OC-MQ-CM-induced invasion. Specific signaling and transcription factors were associated with enhanced CCL7 expression in OC-MQs. CCL7-induced invasion required the expression of matrix metalloproteinase 9 via activation of extracellular signal-related kinase signaling in human ovarian cancer cells. These data suggest that tumor-associated macrophages can affect human ovarian cancer metastasis via the CCL7/CCR3 axis.


2015 ◽  
Vol 137 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Juanni Li ◽  
Long Li ◽  
Zexia Li ◽  
Guanghui Gong ◽  
Puxiang Chen ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Priyanka Shailendra Rana ◽  
Akram Alkrekshi ◽  
Wei Wang ◽  
Vesna Markovic ◽  
Khalid Sossey-Alaoui

The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.


2009 ◽  
Vol 284 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Severin Pinilla ◽  
Eckhard Alt ◽  
F.J. Abdul Khalek ◽  
Constantin Jotzu ◽  
Fabian Muehlberg ◽  
...  

Author(s):  
Marija Plodinec ◽  
Philipp Oertle ◽  
Alexandre Glentis ◽  
Danijela Vignjevic ◽  
Olivier Ganier ◽  
...  

2003 ◽  
Vol 1 (5) ◽  
pp. S227
Author(s):  
K. Danø ◽  
L.R. Lund ◽  
K. Almholt ◽  
M. Johnsen ◽  
T.H. Bugge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document