scholarly journals THE NEW PLANCK SCALE: QUANTIZED SPIN AND CHARGE COUPLED TO GRAVITY

2003 ◽  
Vol 12 (09) ◽  
pp. 1657-1661 ◽  
Author(s):  
F. I. COOPERSTOCK ◽  
V. FARAONI

In the standard approach to defining a Planck scale where gravity is brought into the quantum domain, the Schwarzschild gravitational radius is set equal to the Compton wavelength. However, ignored thereby are the charge and spin, the fundamental quantized aspects of matter. The gravitational and null-surface radii of the Kerr–Newman metric are used to introduce spin and charge into a new extended Planck scale. The fine structure constant appears in the extended Planck mass and the recent discovery of the α variation with the evolution of the universe adds further significance. An extended Planck charge and Planck spin are derived. There is an intriguing suggestion of a connection with the α value governing high-energy radiation in Z-boson production and decay.

2003 ◽  
Vol 18 (15) ◽  
pp. 1037-1042 ◽  
Author(s):  
F. I. COOPERSTOCK ◽  
V. FARAONI

Traditional derivations of the Planck mass ignore the role of charge and spin in general relativity. From the Kerr–Newman null surface and horizon radii, quantized charge and spin dependence are introduced in an extended Planck scale of mass. Spectra emerge with selection rules dependent upon the choice of Kerr–Newman radius to link with the Compton wavelength. The appearance of the fine structure constant suggests the possibility of a variation in time of the extended Planck mass, which may be much larger than the variation in the traditional one. There is a suggestion of a connection with the α value governing high-energy radiation in Z-boson production and decay.


2016 ◽  
Vol 94 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Cláudio Nassif ◽  
A.C. Amaro de Faria

We investigate how the universal constants, including the fine structure constant, have varied since the early universe close to the Planck energy scale (EP ∼ 1019 GeV) and, thus, how they have evolved over the cosmological time related to the temperature of the expanding universe. According to a previous paper (Nassif and Amaro de Faria, Jr. Phys. Rev. D, 86, 027703 (2012). doi:10.1103/PhysRevD.86.027703), we have shown that the speed of light was much higher close to the Planck scale. In the present work, we will go further, first by showing that both the Planck constant and the electron charge were also too large in the early universe. However, we conclude that the fine structure constant (α ≅ 1/137) has remained invariant with the age and temperature of the universe, which is in agreement with laboratory tests and some observational data. Furthermore, we will obtain the divergence of the electron (or proton) mass and also the gravitational constant (G) at the Planck scale. Thus, we will be able to verify the veracity of Dirac’s belief about the existence of “coincidences” between dimensionless ratios of subatomic and cosmological quantities, leading to a variation of G with time, that is, the ratio of the electrostatic to gravitational forces between an electron and a proton (∼1041) is roughly equal to the age of the universe divided by an elementary time constant, so that the strength of gravity, as determined by G, must vary inversely with time in the approximation of lower temperature or for times very far from the early period, to compensate for the time-variation of the Hubble parameter (H ∼ t−1). In short, we will show the validity of Dirac’s hypothesis only for times very far from the early period or T ≪ TP (∼1032 K).


2014 ◽  
Vol 29 (21) ◽  
pp. 1444016 ◽  
Author(s):  
Joan Solà

The traditional "explanation" for the observed acceleration of the universe is the existence of a positive cosmological constant. However, this can hardly be a truly convincing explanation, as an expanding universe is not expected to have a static vacuum energy density. So, it must be an approximation. This reminds us of the so-called fundamental "constants" of nature. Recent and past measurements of the fine structure constant and of the proton–electron mass ratio suggest that basic quantities of the standard model, such as the QCD scale parameter, Λ QCD , might not be conserved in the course of the cosmological evolution. The masses of the nucleons and of the atomic nuclei would be time-evolving. This can be consistent with General Relativity provided the vacuum energy itself is a dynamical quantity. Another framework realizing this possibility is QHD (Quantum Haplodynamics), a fundamental theory of bound states. If one assumes that its running couplings unify at the Planck scale and that such scale changes slowly with cosmic time, the masses of the nucleons and of the DM particles, including the cosmological term, will evolve with time. This could explain the dark energy of the universe.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2009 ◽  
Vol 5 (H15) ◽  
pp. 304-304
Author(s):  
J. C. Berengut ◽  
V. A. Dzuba ◽  
V. V. Flambaum ◽  
J. A. King ◽  
M. G. Kozlov ◽  
...  

Current theories that seek to unify gravity with the other fundamental interactions suggest that spatial and temporal variation of fundamental constants is a possibility, or even a necessity, in an expanding Universe. Several studies have tried to probe the values of constants at earlier stages in the evolution of the Universe, using tools such as big-bang nucleosynthesis, the Oklo natural nuclear reactor, quasar absorption spectra, and atomic clocks (see, e.g. Flambaum & Berengut (2009)).


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3342-3353 ◽  
Author(s):  
V. V. FLAMBAUM ◽  
J. C. BERENGUT

We review recent works discussing the effects of variation of fundamental "constants" on a variety of physical systems. These are motivated by theories unifying gravity with other interactions that suggest the possibility of temporal and spatial variation of the fundamental constants in an expanding Universe. The effects of any potential variation of the fine-structure constant and fundamental masses could be seen in phenomena covering the lifespan of the Universe, from Big Bang nucleosynthesis to quasar absorption spectra to modern atomic clocks. We review recent attempts to find such variations and discuss some of the most promising new systems where huge enhancements of the effects may occur.


2020 ◽  
Vol 6 (17) ◽  
pp. eaay9672 ◽  
Author(s):  
Michael R. Wilczynska ◽  
John K. Webb ◽  
Matthew Bainbridge ◽  
John D. Barrow ◽  
Sarah E. I. Bosman ◽  
...  

Observations of the redshift z = 7.085 quasar J1120+0641 are used to search for variations of the fine structure constant, a, over the redshift range 5:5 to 7:1. Observations at z = 7:1 probe the physics of the universe at only 0.8 billion years old. These are the most distant direct measurements of a to date and the first measurements using a near-IR spectrograph. A new AI analysis method is employed. Four measurements from the x-shooter spectrograph on the Very Large Telescope (VLT) constrain changes in a relative to the terrestrial value (α0). The weighted mean electromagnetic force in this location in the universe deviates from the terrestrial value by Δα/α = (αz − α0)/α0 = (−2:18 ± 7:27) × 10−5, consistent with no temporal change. Combining these measurements with existing data, we find a spatial variation is preferred over a no-variation model at the 3:9σ level.


The probability of the simultaneous of a positron and an electron, with the emission of two quanta of radiation, has been calculated by Dirac and several other authors. From considerations of energy and momentum it follows that an electron and positron can only annihilate one another with the emission of one quantum of radiation in the presence of a third body. An electron bound in an atom could, therefore, annihilate a positron, represented by a hole on the Dirac theory, by jumping into a state of negative energy which happens to be free, the nucleus taking up the extra momentum. The process is now mathematically analogous to the photoelectric transitions to states of negative energy in the sense that the matrix elements concerned are the same, and we might expect that the effect would be most important for the electrons in the K-shell. Fermi and Uhlenbeck have calculated the process approximately, for the condition where the kinetic energy of the positron is of the order of magnitude of the ionization energy of the K-shell. The result they obtained was very small compared with the two quantum process, which is to be explained by the fact that for these small energies, the positron does not get near the nucleus. In view of the fact that positrons of energies of the order 100 mc 2 occur in considerable quantities in the showers produced by cosmic radiation, and that the primary cosmic radiation itself may consist, in part, of positrons, it becomes of interest to calculate the cross-section for the annihilation of positrons of high energy by electrons in the K-shell, and their absorption in matter, and also to compare this process with the two quantum process for high energies. In the photoelectric effect for hard γ -rays, the electron the electron leaves the atom in states of different angular momentum (described by the azimuthal quantum number l ), and the terms which give the largest contribution are roughly those for which l is of the order of the energy of the γ -ray in terms of mc 2 . For high energies, therefore, a calculation by the method of Hulme, in which the last step is carried out numerically, is out of the question, and we must find some approximate method of effecting a summation. We shall use an adaptation of Sauter's method, in which we shall treat as small the product of the fine structure constant and the nuclear charge. This method may be expected to give a good approximation for small nuclear charge. Our method has the further restriction that it is valid only when the kinetic energy of the positron is not small compared with mc 2 .


2001 ◽  
Vol 16 (24) ◽  
pp. 3989-4009 ◽  
Author(s):  
L. V. LAPERASHVILI ◽  
D. A. RYZHIKH ◽  
H. B. NIELSEN

Using a two-loop approximation for β functions, we have considered the corresponding renormalization group improved effective potential in the dual Abelian Higgs model (DAHM) of scalar monopoles and calculated the phase transition (critical) couplings in U(1) and SU (N) regularized gauge theories. In contrast to our previous result α crit ≈0.17, obtained in the one-loop approximation with the DAHM effective potential (see Ref. 20), the critical value of the electric fine structure constant in the two-loop approximation, calculated in the present paper, is equal to α crit ≈0.208 and coincides with the lattice result for compact QED10: [Formula: see text]. Following the 't Hooft's idea of the "Abelization" of monopole vacuum in the Yang–Mills theories, we have obtained an estimation of the SU (N) triple point coupling constants, which is [Formula: see text]. This relation was used for the description of the Planck scale values of the inverse running constants [Formula: see text] (i= 1, 2, 3 correspond to U(1), SU(2) and SU(3) groups), according to the ideas of the multiple point model.16


Author(s):  
Ari Lehto

It is proposed that the electrons have an intrinsic periodic property, which determines particle’s rest energy, electric charge, and magnetic moment. Numerical analysis shows that the correct periods are generated by a precise period doubling cascade starting at the Planck scale. Periods corresponding to the values of the intrinsic physical properties of the electron and positron belong to a subset of stable periods. The periodic structures of the rest energy and magnetic moment consist of three internal degrees of freedom, whereas the Coulomb energy of the electric charge consists of four. The number of period doublings for the elementary charge determines the value of the fine structure constant alpha.


Sign in / Sign up

Export Citation Format

Share Document