scholarly journals THE LENSE–THIRRING EFFECT IN THE JOVIAN SYSTEM OF THE GALILEAN SATELLITES AND ITS MEASURABILITY

2005 ◽  
Vol 14 (12) ◽  
pp. 2039-2049 ◽  
Author(s):  
LORENZO IORIO ◽  
VALÉRY LAINEY

We investigate the possibility of measuring the post-Newtonian general relativistic gravitomagnetic Lense–Thirring effect in the Jovian system of its Galilean satellites Io, Europa, Ganymede and Callisto in view of recent developments in processing and modeling their optical observations spanning a large time interval (125 years). The present day best observations have an accuracy between several kilometers to few tens of kilometers, which is just the order of magnitude of the Lense–Thirring shifts of the orbits of the Galilean satellites over almost a century. From a comparison between analytical development and numerical integration it turns out that, unfortunately, most of the secular component of the gravitomagnetic signature is removed in the process of fitting the initial conditions. Indeed, an estimation of the magnitude of the Lense–Thirring effect in the ephemerides residuals is given; the resulting residuals have a maximum magnitude of 20 meters only (over 125 years).

2021 ◽  
Vol 217 (3) ◽  
Author(s):  
E. M. Rossi ◽  
N. C. Stone ◽  
J. A. P. Law-Smith ◽  
M. Macleod ◽  
G. Lodato ◽  
...  

AbstractTidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is – so far – incompletely understood. However, the disruption process has been studied extensively for almost half a century, and unlike the later stages of a TDE, our understanding of the disruption itself is reasonably well converged. In this Chapter, we review both analytical and numerical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude physics, we review models of increasing sophistication, the semi-analytic “affine formalism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent hydrodynamic results concerning the disruption of realistic stellar models. Our review surveys the immediate aftermath of disruption in both typical and more unusual TDEs, exploring how the fate of the tidal debris changes if one considers non-main sequence stars, deeply penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal disruption process provides the initial conditions needed to model the formation of accretion flows around quiescent massive black holes, and in some cases may also lead to directly observable emission, for example via shock breakout, gravitational waves or runaway nuclear fusion in deeply plunging TDEs.


1974 ◽  
Vol 1 (14) ◽  
pp. 42
Author(s):  
V.F. Motta ◽  
J.V. Bandeira

The total annual volume of littoral drift on either side of the mouth of Sergipe estuary, in the Northeast of Brazil, has been de_ termined by applying Caldwell's, Castanho's and Bijker's methods to the wave characteristics that had been recorded at a twenty-metre depth of water, over a whole year, for the design of an offshore oil terminal. The three computation methods yielded the same order of maj> nitude which was found to amount to about 80000Om^/year. The dominant drift is s outhwes tward, and its predicted amount is 660000m-*/year. It was also found that although the three methods lead to total re suits of the same order of magnitude, they do not agree as to the vari^ ation of littoral drift over the year for the s ame waves. An eight-metre deep shipping channe 1 has been dredgedaccross the bar. The channel was surveyed in December 1971, August and Decem ber 1972, and a cubature of the deposits was made after the littoraldrift computations had been carried out. As the latter had been per formed on a monthly basis, a comparison became possible between pre dieted and actual volumes of deposits for the same lengths of time. The predicted volumes for the whole year were found to be from 34 to 46% greater than the actual results. However, for the time interval August-December 1972 a remarkable agreement was found be^ tween predicted and actual results.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 443
Author(s):  
Lorenzo Iorio

One of the post-Keplerian (PK) parameters determined in timing analyses of several binary pulsars is the fractional periastron advance per orbit kPK. Along with other PK parameters, it is used in testing general relativity once it is translated into the periastron precession ω˙PK. It was recently remarked that the periastron ω of PSR J0737–3039A/B may be used to measure/constrain the moment of inertia of A through the extraction of the general relativistic Lense–Thirring precession ω˙LT,A≃−0.00060∘yr−1 from the experimentally determined periastron rate ω˙obs provided that the other post-Newtonian (PN) contributions to ω˙exp can be accurately modeled. Among them, the 2PN seems to be of the same order of magnitude of ω˙LT,A. An analytical expression of the total 2PN periastron precession ω˙2PN in terms of the osculating Keplerian orbital elements, valid not only for binary pulsars, is provided, thereby elucidating the subtleties implied in correctly calculating it from k1PN+k2PN and correcting some past errors by the present author. The formula for ω˙2PN is demonstrated to be equivalent to that obtainable from k1PN+k2PN by Damour and Schäfer expressed in the Damour–Deruelle (DD) parameterization. ω˙2PN actually depends on the initial orbital phase, hidden in the DD picture, so that −0.00080∘yr−1≤ω˙2PN≤−0.00045∘yr−1. A recently released prediction of ω˙2PN for PSR J0737–3039A/B is discussed.


Author(s):  
D.Y. Ivanov ◽  

Here we consider the initial-boundary value problems in a homogeneous cylindrical domain YI Ω ×+ ( Ω+ is an open two-dimensional bounded simply connected domain with a boundary 5 ∂Ω ∈C , 2 \ Ω≡ Ω − + R is the open exterior of the domain Ω+ , [0, ] YI ≡ Y is the height of the cylinder) on a time interval [0, ] TI ≡ T . The initial conditions and the boundary conditions on the bases of the cylinder are zero, and the boundary conditions on the lateral surface of the cylinder are given by the function 1 2 wx x yt ( , , ,) ( 1 2 (, ) x x ∈∂Ω , Y y ∈ I , T t I ∈ ). An approximate solution of such problems is obtained through the combined use of the Fourier method and the collocation boundary element method based on piecewise quadratic interpolation (PQI). The solution to the problem in the cylinder is expanded in a Fourier series in terms of eigenfunctions of the operator 2 By yy ≡ ∂ with the corresponding zero boundary conditions. The coefficients of such a Fourier series are solutions of problems for two-dimensional heat equations 2 2 t ∇ =∂ + u u ku . With a low smoothness of the functions w in the variable y, the weight of solutions at large values of k increases and the accuracy of solving the problem in the cylinder decreases. To maintain accuracy on a uniform grid, the step of discretization of the boundary function w with respect to the variable y is decreased by a factor of j. Here j is an averaged value of the quantity Y k π depending on the function w. In addition, the steps of discretization of functions ( ) 2 exp − τ k with respect to the variable τ in domains τ≤πT k are reduced by a factor of 2 2 k π . The steps in the remaining ranges of values τ and the steps by the other variables remain unchanged. The approximate solutions obtained on the basis of this procedure converge stably to exact solutions in the 2 ( ) LI I Y T × -norm with a cubic velocity uniformly with respect to sets of functions w, bounded by norm of functions with low smoothness in the variable y, uniformly along the length of the generatrix of the cylinder Y , and uniformly in the domain Ω . The latter is also associated with the use of PQI along the curve ∂Ω over the variable 2 2 ρ≡ − r d , which is carried out at small values of r ( d and r are the distances from the observed point of the domain Ω to the boundary ∂Ω and to the current point of integration along ∂Ω , respectively). The theoretical conclusions are confirmed by the results of the numerical solution of the problem in a circular cylinder, where the dependence of the boundary functions w on y is given by the normalized eigenfunctions of the differential operator By which vary in a sufficiently large range of values of k .


2019 ◽  
Vol 147 (9) ◽  
pp. 3445-3466 ◽  
Author(s):  
Andrés A. Pérez Hortal ◽  
Isztar Zawadzki ◽  
M. K. Yau

Abstract We introduce a new technique for the assimilation of precipitation observations, the localized ensemble mosaic assimilation (LEMA). The method constructs an analysis by selecting, for each vertical column in the model, the ensemble member with precipitation at the ground that is locally closest to the observed values. The proximity between the modeled and observed precipitation is determined by the mean absolute difference of precipitation intensity, converted to reflectivity and measured over a spatiotemporal window centered at each grid point of the model. The underlying hypothesis of the approach is that the ensemble members that are locally closer to the observed precipitation are more probable to be closer to the “truth” in the state variables than the other members. The initial conditions for the new forecast are obtained by nudging the background states toward the mosaic of the closest ensemble members (analysis) over a 30 min time interval, reducing the impacts of the imbalances at the boundaries between the different selected members. The potential of the method is studied using observing system simulation experiments (OSSEs) employing a small ensemble of 20 members. The ensemble is produced by the WRF Model, run at a horizontal grid spacing of 20 km. The experiments lend support to the validity of the hypothesis and allow the determination of the optimal parameters for the approach. In the context of OSSE, this new data assimilation technique is able to produce forecasts with considerable and long-lived error reductions in the fields of precipitation, temperature, humidity, and wind.


1992 ◽  
Vol 152 ◽  
pp. 145-152 ◽  
Author(s):  
R. Dvorak

In this article we present a numerical study of the motion of asteroids in the 2:1 and 3:1 resonance with Jupiter. We integrated the equations of motion of the elliptic restricted 3-body problem for a great number of initial conditions within this 2 resonances for a time interval of 104 periods and for special cases even longer (which corresponds in the the Sun-Jupiter system to time intervals up to 106 years). We present our results in the form of 3-dimensional diagrams (initial a versus initial e, and in the z-axes the highest value of the eccentricity during the whole integration time). In the 3:1 resonance an eccentricity higher than 0.3 can lead to a close approach to Mars and hence to an escape from the resonance. Asteroids in the 2:1 resonance with Jupiter with eccentricities higher than 0.5 suffer from possible close approaches to Jupiter itself and then again this leads in general to an escape from the resonance. In both resonances we found possible regions of escape (chaotic regions), but only for initial eccentricities e > 0.15. The comparison with recent results show quite a good agreement for the structure of the 3:1 resonance. For motions in the 2:1 resonance our numeric results are in contradiction to others: high eccentric orbits are also found which may lead to escapes and consequently to a depletion of this resonant regions.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Fernando Saldaña ◽  
Andrei Korobeinikov ◽  
Ignacio Barradas

We investigate the optimal vaccination and screening strategies to minimize human papillomavirus (HPV) associated morbidity and the interventions cost. We propose a two-sex compartmental model of HPV-infection with time-dependent controls (vaccination of adolescents, adults, and screening) which can act simultaneously. We formulate optimal control problems complementing our model with two different objective functionals. The first functional corresponds to the protection of the vulnerable group and the control problem consists of minimizing the cumulative level of infected females over a fixed time interval. The second functional aims to eliminate the infection, and, thus, the control problem consists of minimizing the total prevalence at the end of the time interval. We prove the existence of solutions for the control problems, characterize the optimal controls, and carry out numerical simulations using various initial conditions. The results and properties and drawbacks of the model are discussed.


1989 ◽  
Vol 131 ◽  
pp. 214-214
Author(s):  
Harriet L. Dinerstein ◽  
Michael W. Werner

Measurements of the [O III] 52, 88 μm and [N III] 57 μm fine-structure emission lines have been obtained for nine planetary nebulae, using the facility far-infrared array spectrometer on NASA's Kuiper Airborne Observatory. The N++/O++ ratios determined from these observations range by more than an order of magnitude among the sample. Using recent improved values for the atomic parameters, we find that the N++/O++ ratios agree fairly well with values of N+/O+ determined from optical lines in the same objects. The highest N++/O++ values, found for the extreme “Type I” nebulae NGC 2440 and NGC 6302, are approximately unity. These results imply that the synthesis and mixing of nitrogen must be extremely efficient in the progenitor stars of some planetary nebulae, and that these nebulae are significant sources of nitrogen to the interstellar medium. The local electron densities derived from the intensity ratios of the two [O III] lines are generally lower than values in the literature determined from small-beam optical observations of other ions, such as [O II]. This effect can be understood in terms of the presence of clumpy structure in the nebula, since the far-infrared lines have fairly low critical densities for collisional de-excitation and therefore are preferentially emitted from low-density gas.


1996 ◽  
Vol 169 ◽  
pp. 403-410
Author(s):  
R.M. Rich

It is reasonable to say that if Jan Oort were alive today, he would no doubt find recent developments in the study of the Galactic bulge to be fascinating. Oort considered the Galactic bulge in two contexts. First, he was interested in the use of the RR Lyrae stars as probes to determine the distance to the Galactic Center. No doubt, Oort would have been excited about the growing evidence of the bulge's triaxiality, as well as by the debate over the age of the bulge. His second interest was in the nature of activity at the center, an issue that I will not discuss in this review. The latter also remains an unsolved problem of the Milky Way, and (based on his work) one that might have been nearer to his heart than this one. Yet the question of when the bulge formed is ultimately a question about the formation history of the Galaxy. The oldest stars (those whose ages we are certain of) are found in Galactic globular clusters, the sum total of which are ≈ 5 × 107M⊙. The field population of the bulge is ≈ 2–3 × 1010M⊙, an order of magnitude more massive than the field population of the metal poor spheroid. So if the bulge formed all at once, and early, then the Milky Way had a luminous, even cataclysmic youth. But if the bulge formed later in the history of our galaxy, as a starburst or dynamical instability of the central disk, then the young Milky Way may have been inconspicuous and primeval galaxies may be hard to find indeed. If our bulge formed very early, its stellar population might have much in common with the giant ellipticals, while a late bulge might teach us much about processes that affect galaxy evolution.


2020 ◽  
Vol 495 (4) ◽  
pp. 3780-3787 ◽  
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT The observations of GW170817/GRB170817A have confirmed that the coalescence of a neutron-star binary is the progenitor of a short gamma-ray burst (GRB). In the standard picture of a short GRB, a collimated highly relativistic outflow is launched after merger and it successfully breaks out from the surrounding ejected matter. Using initial conditions inspired from numerical-relativity binary neutron-star merger simulations, we have performed general-relativistic hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations in which the jet is launched and propagates self-consistently. The complete set of simulations suggests that: (i) MHD jets have an intrinsic energy and velocity polar structure with a ‘hollow core’ subtending an angle θcore ≈ 4°–5° and an opening angle of θjet > ≳ 10°; (ii) MHD jets eject significant amounts of matter and two orders of magnitude more than HD jets; (iii) the energy stratification in MHD jets naturally yields the power-law energy scaling E(> Γβ) ∝ (Γβ)−4.5; (iv) MHD jets provide fits to the afterglow data from GRB170817A that are comparatively better than those of the HD jets and without free parameters; and (v) finally, both of the best-fitting HD/MHD models suggest an observation angle θobs ≃ 21° for GRB170817A.


Sign in / Sign up

Export Citation Format

Share Document