NONLINEAR RESONANCE IN THE VERY EARLY UNIVERSE: SOUNDS OF THE PRIMORDIAL MUSIC

2008 ◽  
Vol 17 (13n14) ◽  
pp. 2459-2465
Author(s):  
H. P. DE OLIVEIRA ◽  
I. DAMIÃO SOARES ◽  
E. V. TONINI

Nonlinear resonance is ubiquitous in nature. Resonance is relevant to understanding phenomena in quite distinct areas such as music, cellular structure, and astrophysics, and in the very early universe. In order to see the crucial role played by resonance in cosmology, we assume that closed FRW universes with a massive inflaton field evolve according to the field equations that contain additional terms arising from high energy corrections to cosmological scenarios. As a consequence, nonsingular bounces in the early evolution of the universe are produced. We have shown that in narrow windows of the parameter space of the models, nonlinear resonance phenomena of KAM tori occur and lead to the destruction of those tori that trap the inflaton, resulting in the escape of the universe into inflation. These resonance windows are labeled by an integer n ≥ 2; n is related to the ratio of the frequencies in the scale factor/scalar field degrees of freedom.


1993 ◽  
Vol 08 (36) ◽  
pp. 3413-3427 ◽  
Author(s):  
ATUSHI ISHIKAWA ◽  
TOSHIKI ISSE

The stability of the minisuperspace model of the early universe is studied by solving the Wheeler-DeWitt equation numerically. We consider a system of Einstein gravity with a scalar field. When we solve the Wheeler-DeWitt equation, we pick up some inhomogeneous wave modes from infinite wave modes adequately: degrees of freedom of the superspace are restricted to finite. We show that the minisuperspace is stable when a scale factor (a) of the universe is a few times larger than the Planck length, while it becomes unstable when a is comparable to the Planck length.



2017 ◽  
Vol 26 (02) ◽  
pp. 1750003 ◽  
Author(s):  
Basem Ghayour

The generated relic gravitational waves underwent several stages of evolution of the universe such as inflation and reheating. These stages were affected on the shape of spectrum of the waves. As well known, at the end of inflation, the scalar field [Formula: see text] oscillates quickly around some point where potential [Formula: see text] has a minimum. The end of inflation stage played a crucial role on the further evolution stages of the universe because particles were created and collisions of the created particles were responsible for reheating the universe. There is a general range for the frequency of the spectrum [Formula: see text])[Formula: see text]Hz. It is shown that the reheating temperature can affect on the frequency of the spectrum as well. There is constraint on the temperature from cosmological observations based on WMAP-9 and Planck. Therefore, it is interesting to estimate allowed value of frequencies of the spectrum based on general range of reheating temperature like few MeV [Formula: see text] GeV, WMAP-9 and Planck data then compare the spectrum with sensitivity of future detectors such as LISA, BBO and ultimate-DECIGIO. The obtained results of this comparison give us some more chance for detection of the relic gravitational waves.



2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
O. V. Babourova ◽  
B. N. Frolov

The solution of the field equations of the conformal theory of gravitation with Dirac scalar field in Cartan-Weyl spacetime at the very early Universe is obtained. In this theory dark energy (described by an effective cosmological constant) is a function of the Dirac scalar field β. This solution describes the exponential decreasing of β at the inflation stage and has a limit to a constant value of the dark energy at large time. This can give a way to solving the fundamental cosmological constant problem as a consequence of the fields dynamics in the early Universe.



2012 ◽  
Vol 90 (5) ◽  
pp. 433-440 ◽  
Author(s):  
A. Tawfik ◽  
H. Magdy

Assuming that the background geometry is filled with a free gas consisting of matter and radiation and that no phase transitions are occurring in the early universe, we discuss the thermodynamics of this closed system using classical approaches. We find that essential cosmological quantities, such as the Hubble parameter H, scale factor a, and curvature parameter k, can be derived from this simple model. On one hand, it obeys the laws of thermodynamics entirely. On the other hand, the results are compatible with the Friedmann–Lemaitre–Robertson–Walker model and the Einstein field equations. The inclusion of a finite bulk viscosity coefficient derives important changes in all of these cosmological quantities. The thermodynamics of the viscous universe is studied and a conservation law is found. Accordingly, our picture of the evolution of the early universe and its astrophysical consequences seems to be the subject of radical revision. We find that the parameter k, for instance, strongly depends on the thermodynamics of the background matter. The time scale, at which a negative curvature might take place, depends on the relation between the matter content and the total energy. Using quantum and statistical approaches, we assume that the size of the universe is given by the volume occupied by one particle and one photon. Different types of interactions between matter and photon are taken into account. In this quantum treatment, expressions for H and a are also introduced. Therefore, the expansion of the universe turns out to be accessible.



2009 ◽  
Vol 18 (05) ◽  
pp. 865-887
Author(s):  
S. K. SRIVASTAVA ◽  
J. DUTTA

In this paper, the cosmology of the late and future universe is obtained from f(R) gravity with nonlinear curvature terms R2 and R3 (R is the Ricci scalar curvature). It is different from f(R) dark energy models where nonlinear curvature terms are taken as a gravitational alternative to dark energy. In the present model, neither linear nor nonlinear curvature terms are taken as dark energy. Rather, dark energy terms are induced by curvature terms and appear in the Friedmann equation derived from f(R) gravitational equations. This approach has an advantage over f(R) dark energy models in three ways: (i) results are consistent with WMAP observations, (ii) dark matter is produced from the gravitational sector and (iii) the universe expands as ~ t2/3 during dominance of the curvature-induced dark matter, which is consistent with the standard cosmology. Curvature-induced dark energy mimics phantom and causes late acceleration. It is found that transition from matter-driven deceleration to acceleration takes place at the redshift 0.36 at time 0.59 t0 (t0 is the present age of the universe). Different phases of this model, including acceleration and deceleration during the phantom phase, are investigated. It is found that expansion of the universe will stop at the age of 3.87 t0 + 694.4 kyr. After this epoch, the universe will contract and collapse by the time of 336.87 t0 + 694.4 kyr. Further, it is shown that cosmic collapse obtained from classical mechanics can be avoided by making quantum gravity corrections relevant near the collapse time due to extremely high energy density and large curvature analogous to the state of the very early universe. Interestingly, the cosmological constant is also induced here; it is extremely small in the classical domain but becomes very high in the quantum domain. This result explains the largeness of the cosmological constant in the early universe due to quantum gravity effects during this era and its very low value in the present universe due to negligible quantum effect in the late universe.



1982 ◽  
Vol 60 (5) ◽  
pp. 659-663 ◽  
Author(s):  
J. W. Moffat ◽  
D. Vincent

The standard Friedmann–Robertson–Walker (FRW) big-bang model of the universe requires special initial conditions: the early universe is highly homogeneous and isotropic even though there exist causally disconnected regions (horizon problem). A plane symmetric (anisotropic) solution of a system of field equations in a generalized theory of gravitation, predicts the beginning of the universe as a vacuum instability at a specific fundamental time (which can be associated with the Planck time (tp)), after which matter is created as the universe begins to expand. At a time t = tc there is a singular expansion, the anisotropy vanishes, and the physical horizon becomes infinite. Thereafter the solution of the field equations goes over into the FRW model. Thus the special initial conditions of the FRW model at the big-bang singularity t = tc are predicted by the theory.



Author(s):  
Mohammed B. Al-Fadhli

The recent Planck Legacy release confirmed the presence of an enhanced lensing amplitude in the cosmic microwave background (CMB) power spectra, which prefers a positively curved early Universe with a confidence level exceeding 99%. In this study, the pre-existing curvature is incorporated to extend the field equations where the derived wavefunction of the Universe is utilised to model Universe evolution with reference to the scale factor of the early Universe and its radius of curvature upon the emission of the CMB. The wavefunction reveals both positive and negative solutions, implying that matter and antimatter of early Universe plasma evolved in opposite directions as distinct Universe sides, corroborating the axis of CMB. The wavefunction indicates that a nascent hyperbolic expansion away from early plasma is followed by a first phase of decelerating expansion during the first 10 Gyr, and then, a second phase of accelerating expansion in reverse directions, whereby both sides free-fall towards each other under gravitational acceleration. The predicted conformal curvature evolution demonstrates the fast orbital speed of outer stars owing to external fields exerted on galaxies as they travel through conformally curved space-time. Finally, the wavefunction predicts an eventual time-reversal phase comprising rapid spatial contraction that culminates in a Big Crunch, signalling a cyclic Universe. These findings show that early plasma could be separated and evolved into distinct sides of the Universe that collectively inducing its evolution, physically explaining the effects attributed to dark energy and dark matter.



2019 ◽  
Vol 34 (11) ◽  
pp. 1950066 ◽  
Author(s):  
Can Aktaş

In this research, we have investigated the behavior of massive and massless scalar field (SF) models (normal and phantom) for Kaluza–Klein universe in [Formula: see text] gravity with cosmological term ([Formula: see text]). To obtain field equations, we have used [Formula: see text] model given by Harko et al. [Phys. Rev. D 84, 024020 (2011)] and anisotropy feature of the universe. Finally, we have discussed our results in [Formula: see text] and General Relativity Theory (GRT) with various graphics.



2015 ◽  
Vol 30 (25) ◽  
pp. 1530021
Author(s):  
Chi Xiong

We introduce the spin-charge separation mechanism to the quark–lepton unification models which consider the lepton number as the fourth color. In certain finite-density systems, quarks and leptons are decomposed into spinons and chargons, which carry the spin and charge degrees of freedom respectively. Neutrinos can be related to the spinons with respect to the electric-charge and spin separation in the early universe or other circumstances. Some effective, probably universal couplings between the spinon sector and the chargon sector are derived and a phenomenological description for the chargon condensate is proposed. It is then demonstrated that the spinon current can induce vorticity in the chargon condensate, and spinon zero modes are trapped in the vortices, forming spinon-vortex bound states. In cosmology this configuration may lead to the emission of extremely high energy neutrinos when vortices split and reconnect.



2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.



Sign in / Sign up

Export Citation Format

Share Document