MODIFIED BRANEWORLD COSMOLOGIES IN THE PRESENCE OF STRINGY CORRECTIONS COUPLED TO A CANONICAL SCALAR FIELD

2009 ◽  
Vol 18 (05) ◽  
pp. 691-715 ◽  
Author(s):  
R. A. EL-NABULSI

The purpose of this paper is to study braneworld cosmologies in the presence of stringy corrections coupled to a canonical scalar field. Two independent models are explored which in their own right provide cosmologies exhibiting the present cosmic acceleration of the universe. The evolution of the cosmological scale factor is studied in four and ten-dimensional space–times. The four-dimensional model is preformed in the context of the nonminimal Maxwell–Gauss–Bonnet gravity while the ten-dimensional model is constructed from the implications of Kaluza–Klein cosmology together with the Gauss–Bonnet Lagrangian in the action with matter fields nonminimally coupled to gravity. Both the low energy and high energy limits are discussed for the two models and many interesting features are described in some detail.

2018 ◽  
Vol 33 (34) ◽  
pp. 1850199 ◽  
Author(s):  
A. I. Keskin

In this study, we examine two models of the scalar field, that is, a normal scalar field and a tachyon scalar field in [Formula: see text] gravity to describe cosmic acceleration of the universe, where [Formula: see text], [Formula: see text] and [Formula: see text] are Ricci curvature scalar, trace of energy–momentum tensor and kinetic energy of scalar field [Formula: see text], respectively. Using the minimal-coupling Lagrangian [Formula: see text], for both the scalar models we obtain a viable cosmological system, where [Formula: see text] and [Formula: see text] are real constants. While a normal scalar field gives a system describing expansion from the deceleration to the late-time acceleration, tachyon field together with [Formula: see text] in the system produces a quintessential expansion which is very close to de Sitter point, where we find a new condition [Formula: see text] for inflation.


2006 ◽  
Vol 21 (35) ◽  
pp. 2663-2670 ◽  
Author(s):  
NARAYAN BANERJEE ◽  
SUDIPTA DAS

In the present work, an attempt has been made to explain the recent cosmic acceleration of the universe with two mutually interacting scalar fields, one being the Brans–Dicke scalar field and the other a quintessence scalar field. Conditions have been derived for which the quintessence scalar field has an early oscillation and it grows during a later time to govern the dynamics of the universe.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460006 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov

We consider modified gravity which may describe the early-time inflation and/or late-time cosmic acceleration of the universe. In particular, we discuss the properties of F(R), F(G), string-inspired and scalar-Einstein–Gauss–Bonnet gravities, including their FRW equations and fluid or scalar-tensor description. Simplest accelerating cosmologies are investigated and possibility of unified description of the inflation with dark energy is described. The cosmological reconstruction program which permits to get the requested universe evolution from modified gravity is developed. As some extension, massive F(R) bigravity which is ghost-free theory is presented. Its scalar-tensor form turns out to be the easiest formulation. The cosmological reconstruction method for such bigravity is presented. The unified description of inflation with dark energy in F(R) bigravity turns out to be possible.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2055-2063 ◽  
Author(s):  
HONGSHENG ZHAO

The phenomena customarily described with the standard ΛCDM model are broadly reproduced by an extremely simple model in TeVeS, Bekenstein's1 modification of general relativity motivated by galaxy phenomenology. Our model can account for the acceleration of the Universe seen at SNeIa distances without a cosmological constant, and the accelerations seen in rotation curves of nearby spiral galaxies and gravitational lensing of high-redshift elliptical galaxies without cold dark matter. The model is consistent with BBN and the neutrino mass between 0.05 eV to 2 eV. The TeVeS scalar field is shown to play the effective dual roles of dark matter and dark energy, with the amplitudes of the effects controlled by a μ function of the scalar field, called the μ essence here. We also discuss outliers to the theory's predictions on multiimaged galaxy lenses and outliers on the subgalaxy scale.


2012 ◽  
Vol 27 (33) ◽  
pp. 1250189 ◽  
Author(s):  
PRABIR RUDRA

In this work we have investigated the emergent scenario of the Universe described by loop quantum cosmology model, DGP brane model and Kaluza–Klein cosmology. Scalar field along with barotropic fluid as normal matter is considered as the matter content of the Universe. In loop quantum cosmology it is found that the emergent scenario is realized with the imposition of some conditions on the value of the density of normal matter in case of normal and phantom scalar field. This is a surprising result indeed considering the fact that scalar field is the dominating matter component! In case of tachyonic field, emergent scenario is realized with some constraints on the value of ρ1 for both normal and phantom tachyon. In case of DGP brane-world realization of an emergent scenario is possible almost unconditionally for normal and phantom fields. Plots and table have been generated to testify this fact. In case of tachyonic field emergent scenario is realized with some constraints on [Formula: see text]. In Kaluza–Klein cosmology emergent scenario is possible only for a closed Universe in case of normal and phantom scalar field. For a tachyonic field, realization of emergent Universe is possible for all models (closed, open and flat).


2014 ◽  
Vol 23 (09) ◽  
pp. 1450075 ◽  
Author(s):  
Murli Manohar Verma ◽  
Shankar Dayal Pathak

It is proposed that the recently announced BICEP2 value of tensor-to-scalar ratio r ~ 0.2 can be explained as containing an extra contribution from the recent acceleration of the universe. In fact this contribution, being robust, recent and of much longer duration (by a large order of magnitude) may dominate the contribution from the inflationary origin. In a possible scenario, matter (dark or baryonic) and radiation etc. can emerge from a single Higgs-like tachyonic scalar field in the universe through a physical mechanism not yet fully known to us. The components interact among themselves to achieve the thermodynamical equilibrium in the evolution of the universe. The field potential for the present acceleration of the universe would give a boost to the amplitude of the tensor fluctuations of gravity waves generated by the early inflation and the net effects may be higher than the earlier Planck bounds. In the process, the dark energy, as a cosmological constant decays into creation of dark matter. The diagnostics for the three-component, spatially homogeneous tachyonic scalar field are discussed in detail. The components of the field with perturbed equation of state (EoS) are taken to interact mutually and the conservation of energy for individual components gets violated. We study mainly the Om(x) diagnostics with the observed set of H(z) values at various redshifts, and the dimensionless statefinders for these interacting components. This analysis provides a strong case for the interacting dark energy in our model.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950066 ◽  
Author(s):  
Can Aktaş

In this research, we have investigated the behavior of massive and massless scalar field (SF) models (normal and phantom) for Kaluza–Klein universe in [Formula: see text] gravity with cosmological term ([Formula: see text]). To obtain field equations, we have used [Formula: see text] model given by Harko et al. [Phys. Rev. D 84, 024020 (2011)] and anisotropy feature of the universe. Finally, we have discussed our results in [Formula: see text] and General Relativity Theory (GRT) with various graphics.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.


1999 ◽  
Vol 14 (29) ◽  
pp. 2025-2031 ◽  
Author(s):  
MERAB GOGBERASHVILI

Five-dimensional model with extended dimensions investigated. It is shown that four dimensionality of our world is the result of the stability requirement. Extra component of five-dimensional Einstein's equations that is responsible for trapping of matter fields coincides with the condition of stability.


2004 ◽  
Vol 19 (08) ◽  
pp. 627-638 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We discuss the modified gravity which may produce the current cosmic acceleration of the universe and eliminate the need for dark energy. It is shown that such models where the action quickly grows with the decrease of the curvature define the FRW universe with the minimal curvature. Infinite time is required to reach the minimal curvature during the universe evolution. It is demonstrated that quantum effects of conformal fields may strongly suppress the instabilities discovered in modified gravity. We also briefly speculate on the modification of gravity combined with the presence of the cosmological constant dark energy.


Sign in / Sign up

Export Citation Format

Share Document