HOLOGRAMS OF FLAT SPACE

2013 ◽  
Vol 22 (12) ◽  
pp. 1342003 ◽  
Author(s):  
ARJUN BAGCHI ◽  
DANIEL GRUMILLER

The holographic principle has a concrete realization in the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. If this principle is a true fact about quantum gravity then it must also hold beyond AdS/CFT. In this paper, we address specifically holographic field theory duals of gravitational theories in asymptotically flat spacetimes. We present some evidence of our recent conjecture that three-dimensional (3d) conformal Chern–Simons gravity (CSG) with flat space boundary conditions is dual to an extremal CFT.

2008 ◽  
Vol 86 (4) ◽  
pp. 563-570
Author(s):  
R B Mann

The implementation of holography in gravitational physics has its most concrete realization in the context of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence conjecture, an implication of which is that counterterms from the boundary CFT can be understood as surface terms that render the variational principle finite and well-defined for the gravity theory in the bulk. I discuss recent developments that show how such gravitational counterterms can be deployed for asymptotically flat spacetimes in any spacetime dimension d ≥ 4. These actions yield conserved quantities at spacelike infinity that agree with the usual Arnowitt–Deser–Misner results but are more general. This approach removes the need for ill-defined background subtraction methods and suggests the possibility of obtaining a dual field theory to gravity theories in asymptotically flat spacetimes.PACS Nos.: 04.20.Ha, 04.60.–m, 11.25.Tq


1999 ◽  
Vol 14 (28) ◽  
pp. 1961-1981 ◽  
Author(s):  
SHUHEI MANO

A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.


2014 ◽  
Vol 92 (11) ◽  
pp. 1481-1484 ◽  
Author(s):  
J. Naji ◽  
S. Heydari ◽  
A. Amjadi

In this paper, we consider a charged black hole in three dimensions with a scalar charge and discuss energy loss of a heavy particle moving near the black hole horizon. This analysis is useful when anti-de Sitter space – conformal field theory correspondence is applied. We find that an electric charge of a black hole increases the drag force but a scalar charge decreases it.


1990 ◽  
Vol 05 (05) ◽  
pp. 959-988 ◽  
Author(s):  
MICHIEL BOS ◽  
V.P. NAIR

Three-dimensional Chern-Simons gauge theories are quantized in a functional coherent state formalism. The connection with two-dimensional conformal field theory is found to emerge naturally. The normalized wave functionals are identified as generating functionals for the chiral blocks of two-dimensional current algebra.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Hao Geng ◽  
Severin Lüst ◽  
Rashmish K. Mishra ◽  
David Wakeham

Abstract We study the AdS/BCFT duality between two-dimensional conformal field theories with two boundaries and three-dimensional anti-de Sitter space with two Karch-Randall branes. We compute the entanglement entropy of a bipartition of the BCFT, on both the gravity side and the field theory side. At finite temperature this entanglement entropy characterizes the communication between two braneworld black holes, coupled to each other through a common bath. We find a Page curve consistent with unitarity. The gravitational result, computed using double-holographically realized quantum extremal surfaces, matches the conformal field theory calculation.At zero temperature, we obtain an interesting extension of the AdS3/BCFT2 correspondence. For a central charge c, we find a gap $$ \left(\frac{c}{16},\frac{c}{12}\right) $$ c 16 c 12 in the spectrum of the scaling dimension ∆bcc of the boundary condition changing operator (which interpolates mismatched boundary conditions on the two boundaries of the BCFT). Depending on the value of ∆bcc, the gravitational dual is either a defect global AdS3 geometry or a single sided black hole, and in both cases there are two Karch-Randall branes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
David A. Lowe ◽  
David M. Ramirez

Abstract With a view to understanding extended-BMS symmetries in the framework of the AdS4/CFT3 correspondence, asymptotically AdS geometries are constructed with null impulsive shockwaves involving a discontinuity in superrotation parameters. The holographic dual is proposed to be a two-dimensional Euclidean defect conformal field localized on a particular timeslice in a three-dimensional conformal field theory on de Sitter spacetime. The defect conformal field theory generates a natural action of the Virasoro algebra. The large radius of curvature limit ℓ → ∞ yields spacetimes with nontrivial extended-BMS charges corresponding to a single set of Virasoro charges.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Tadashi Takayanagi ◽  
Takahiro Uetoko

Abstract In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.


1991 ◽  
Vol 06 (20) ◽  
pp. 3571-3598 ◽  
Author(s):  
NOUREDDINE CHAIR ◽  
CHUAN-JIE ZHU

Some tetrahedra in SUk(2) Chern-Simons-Witten theory are computed. The results can be used to compute an arbitrary tetrahedron inductively by fusing with the fundamental representation. The results obtained are in agreement with those of quantum groups. By associating a (finite) topological field theory (FTFT) to every rational conformal field theory (RCFT), we show that the pentagon and hexagon equations in RCFT follow directly from some skein relations in FTFT. By generalizing the operation of surgery on links in FTFT, we also derive an explicit expression for the modular transformation matrix S(k) of the one-point conformal blocks on a torus in RCFT and the equations satisfied by S(k), in agreement with those required in RCFT. The implication of our results on the general program of classifying RCFT is also discussed.


1999 ◽  
Vol 14 (06) ◽  
pp. 815-843 ◽  
Author(s):  
M. J. DUFF

There has recently been a revival of interest in anti-de-Sitter space (AdS), brought about by the conjectured duality between physics in the bulk of AdS and a conformal field theory on the boundary. Since the whole subject of branes, singletons and superconformal field theories on the AdS boundary was an active area of research about ten years ago, we begin with a historical review, including the idea of the "membrane at the end of the universe." We then compare the old and new approaches and discuss some new results on AdS 5 × S5 and AdS 3 × S3.


Sign in / Sign up

Export Citation Format

Share Document