Local heating of the universe by the Higgs field

2018 ◽  
Vol 27 (06) ◽  
pp. 1841003
Author(s):  
K. M. Belotsky ◽  
A. V. Grobov ◽  
S. G. Rubin

It is shown that the creation of primordial massive black holes is accompanied by a local heating of the matter. The developed mechanism is based on the interaction of the Higgs field and a scalar field responsible for black hole formation. We also consider dynamical behavior of parameters such as a scale and chemical composition of such heating regions.

1998 ◽  
Vol 184 ◽  
pp. 77-78
Author(s):  
T. Tsuribe

Dynamical collapse of rotating cloud and subsequent mass supply to the central object is the basic physical process on the formation of the central black holes in the high-z QSO cosmologically. Considering the formation of super massive black holes, the centrifugal barrier plays an important role. In this contribution, I consider the viscous effect to the self-gravitating disk which formed cosmologically. In particular, unsteady growth of the central core is treated consistently with surrounding accreting disks semi-analytically. A new self-similar solution of axisymmetric viscous accretion onto an evolving point mass is obtained. Application to QSO progenitor black hole formation is briefly discussed.


2022 ◽  
Vol 9 ◽  
Author(s):  
Iair Arcavi

Studying invisible objects in space that are hundreds of millions of light years away may sound impossible. But, in recent years, astronomers have developed a new way to investigate a type of invisible and distant objects—super-massive black holes. Black holes are the most densely packed objects in the Universe. When stars get close to super-massive black holes they can be torn apart, which produces a relatively brief but informative flash of light. These star-destroying events can help us to discover the locations of the most massive black holes in the Universe, but only if we know how to find and interpret them. In this article, we will discuss different ways we can “see” black holes, and particularly what we do and do not yet understand about stars getting “tidally disrupted” by them. Light YearThe distance light travels in a year, which is 5,878,625,370,000 miles.


2009 ◽  
Vol 5 (S267) ◽  
pp. 26-33 ◽  
Author(s):  
Marta Volonteri

AbstractMassive black holes (MBHs) are nowadays believed to reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than their hosts (~ 0.1%), are linked to the evolution of galactic structure. When did it all start? In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation have to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for “seed” black holes that are likely to take place at early cosmic epochs, and possible observational tests of these scenarios.


Author(s):  
Amy E. Reines ◽  
Andrea Comastri

AbstractObservational constraints on the birth and early evolution of massive black holes come from two extreme regimes. At high redshift, quasars signal the rapid growth of billion-solar-mass black holes and indicate that these objects began remarkably heavy and/or accreted mass at rates above the Eddington limit. At low redshift, the smallest nuclear black holes known are found in dwarf galaxies and provide the most concrete limits on the mass of black hole seeds. Here, we review current observational work in these fields that together are critical for our understanding of the origin of massive black holes in the Universe.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


1998 ◽  
Vol 11 (1) ◽  
pp. 28-41
Author(s):  
I.D. Novikov

Some 30 years ago very few scientists thought that black holes may really exist. Attention focussed on the black hole hypothesis after neutron stars had been discovered. It was rather surprising that astrophysicists immediately ‘welcomed’ black holes. They found their place not only in the remnants of supernova explosions but also in the nuclei of galaxies and quasars.


2000 ◽  
Vol 09 (06) ◽  
pp. 705-710 ◽  
Author(s):  
XIN HE MENG ◽  
BIN WANG ◽  
S. FENG

Measurements of the distances to SNe Ia have produced strong evidence that the expansion of the Universe is really accelarating, implying the existence of a nearly uniform component of dark energy with the simplest explanation as a cosmological constant. In this paper a small changing cosmological term is proposed, which is a function of a slow-rolling scalar field, by which the de Sitter primordial black holes' properties, for both charged and uncharged cases, are carefully examined and the relationship between the black hole formation and the energy transfer of the inflaton is eluciated. The criterion for primordial black hole formation is given.


Sign in / Sign up

Export Citation Format

Share Document