scholarly journals Noncommutative geometry inspired rotating black string

2018 ◽  
Vol 27 (12) ◽  
pp. 1850108 ◽  
Author(s):  
Dharm Veer Singh ◽  
Md Sabir Ali ◽  
Sushant G. Ghosh

Noncommutativity is an idea dating back to that early times of quantum mechanics and the string theory induced noncommutative (NC) geometry provided an effective framework to study the short distance spacetime dynamics. Also, string theory, a candidate for a consistent quantum theory of gravity, admits a variety of classical black hole solutions including black strings. In this paper, we study a NC geometry inspired rotating black string to cylindrical spacetime with a source given by a smeared distribution of mass. The resulting metric is a regular everywhere, i.e. curvature-singularity free rotating black string, that in large [Formula: see text] limit interpolates Lemos black string. Thermodynamical properties of the black strings are also investigated and exact expressions for the temperature, the entropy and the heat capacity are obtained. Owing to the NC correction in the solution, the thermodynamic quantities have also been modified and that the NC geometry inspired black string is always thermodynamically stable.

2013 ◽  
Vol 91 (3) ◽  
pp. 236-241 ◽  
Author(s):  
M. Sharif ◽  
Wajiha Javed

This paper is devoted to studying the thermodynamics of charged Newman–Unti–Tamburino black hole solutions to the field equations, including rotation and acceleration. We evaluate some thermodynamic quantities like surface gravity, Hawking temperature, the entropy–area relationship, heat capacity, and the first law of thermodynamics. These quantities reduce to the results already available in the literature for some particular cases. We also explore their graphical behavior.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050070
Author(s):  
Ujjal Debnath

We study the four-dimensional (i) modified Bardeen black hole, (ii) modified Hayward black hole, (iii) charged regular black hole and (iv) magnetically charged regular black hole. For modified Bardeen black hole and modified Hayward black hole, we found only one horizon (event horizon) and then we found some thermodynamic quantities like the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the event horizon. We here study the bounds of the above thermodynamic quantities for these black holes on the event horizon. Then, we examine the thermodynamics stability of the black holes with some conditions. Next, we studied the charged regular black hole and magnetically charged regular black hole and found two horizons (Cauchy and event horizons) of these black holes. Then, we found the entropy, surface area, irreducible mass, temperature, Komar energy and specific heat capacity on the Cauchy and event horizons. Then, we get some conditions for thermodynamic stability/instability of the black holes. We found the radius of the extremal horizon and Christodoulou–Ruffiini mass and then analyze the above thermodynamic quantities on the extremal horizon. We calculate the sum/subtraction, product, division and sum/subtraction of inverse of surface areas, entropies, irreducible masses, temperatures, Komar energies and specific heat capacities on both the horizons. From these, we found the bounds of the above quantities on the horizons.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850069 ◽  
Author(s):  
Iarley P. Lobo ◽  
H. Moradpour ◽  
J. P. Morais Graça ◽  
I. G. Salako

A promising theory in modifying general relativity (GR) by violating the ordinary energy–momentum conservation law in curved spacetime is the Rastall theory of gravity. In this theory, geometry and matter fields are coupled to each other in a nonminimal way. Here, we study thermodynamic properties of some black hole (BH) solutions in this framework, and compare our results with those of GR. We demonstrate how the presence of these matter sources amplifies the effects caused by the Rastall parameter in thermodynamic quantities. Our investigation also shows that BHs with radius smaller than a certain amount ([Formula: see text]) have negative heat capacity in the Rastall framework. In fact, it is a lower bound for the possible values of horizon radius satisfied by the stable BHs.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2018 ◽  
Vol 15 (02) ◽  
pp. 1850018 ◽  
Author(s):  
Piero Nicolini ◽  
Anais Smailagic ◽  
Euro Spallucci

Recently, it has been claimed by Chinaglia and Zerbini that the curvature singularity is present even in the so-called regular black hole solutions of the Einstein equations. In this brief note, we show that this criticism is devoid of any physical content.


1999 ◽  
Vol 14 (07) ◽  
pp. 1015-1034 ◽  
Author(s):  
MARIANO CADONI

We study the BPS black hole solutions of the (truncated) action for heterotic string theory compactified on a six-torus. The O (3,Z) duality symmetry of the theory, together with the bound state interpretation of extreme black holes, is used to generate the whole spectrum of the solutions. The corresponding space–time structures, written in terms of the string metric, are analyzed in detail. In particular, we show that only the elementary solutions present naked singularities. The bound states have either null singularities (electric solutions) or are regular (magnetic or dyonic solutions) with near-horizon geometries given by the product of two 2d spaces of constant curvature. The behavior of some of these solutions as supersymmetric attractors is discussed. We also show that our approach is very useful to understand some of the puzzling features of charged black hole solutions in string theory.


1996 ◽  
Vol 11 (37) ◽  
pp. 2933-2939 ◽  
Author(s):  
A. GHOSH ◽  
P. MITRA

For extremal charged black holes, the thermodynamic entropy is proportional to the mass or charges but not proportional to the area. This is demonstrated here for dyonic extremal black hole solutions of string theory. It is pointed out that these solutions have zero classical action although the area is nonzero. By combining the general form of the entropy allowed by thermodynamics with recent observations in the literature it is possible to fix the entropy almost completely.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ibrahima Bah ◽  
Pierre Heidmann

Abstract We construct smooth static bubble solutions, denoted as topological stars, in five-dimensional Einstein-Maxwell theories which are asymptotic to ℝ1,3×S1. The bubbles are supported by allowing electromagnetic fluxes to wrap smooth topological cycles. The solutions live in the same regime as non-extremal static charged black strings, that reduce to black holes in four dimensions. We generalize to multi-body configurations on a line by constructing closed-form generalized charged Weyl solutions in the same theory. Generic solutions consist of topological stars and black strings stacked on a line, that are wrapped by electromagnetic fluxes. We embed the solutions in type IIB String Theory on S1×T4. In this framework, the charged Weyl solutions provide a novel class in String Theory of multiple charged objects in the non-supersymmetric and non-extremal black hole regime.


2016 ◽  
Vol 32 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Huai-Fan Li ◽  
Meng-Sen Ma ◽  
Ya-Qin Ma

We study the thermodynamic properties of Schwarzschild–de Sitter (SdS) black hole and Reissner–Nordström–de Sitter (RNdS) black hole in view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.


Sign in / Sign up

Export Citation Format

Share Document