scholarly journals HEND: A DATABASE FOR HIGH-ENERGY NUCLEAR DATA

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2370-2374
Author(s):  
DAVID BROWN ◽  
RAMONA VOGT

We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. The database will be searchable and cross-indexed with relevant publications, including published detector descriptions. It should eventually contain all published data from older heavy-ion programs such as the Bevalac, AGS, SPS and FNAL fixed-target programs, as well as published data from current programs at RHIC and new facilities at GSI (FAIR), KEK/Tsukuba and the LHC collider. This data includes all proton-proton, proton-nucleus to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of experiments. To enhance the utility of the database, we propose periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support.

Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 122 ◽  
Author(s):  
Keming Shen ◽  
Gergely Gábor Barnaföldi ◽  
Tamás Sándor Biró

We investigate how the non-extensive approach works in high-energy physics. Transverse momentum ( p T ) spectra of several hadrons are fitted by various non-extensive momentum distributions and by the Boltzmann–Gibbs statistics. It is shown that some non-extensive distributions can be transferred one into another. We find explicit hadron mass and center-of-mass energy scaling both in the temperature and in the non-extensive parameter, q, in proton–proton and heavy-ion collisions. We find that the temperature depends linearly, but the Tsallis q follows a logarithmic dependence on the collision energy in proton–proton collisions. In the nucleus–nucleus collisions, on the other hand, T and q correlate linearly, as was predicted in our previous work.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 98
Author(s):  
Astrid Morreale

Quarks and gluons are the fundamental constituents of nucleons. Their interactions rather than their mass are responsible for 99 % of the mass of all visible matter in the universe. Measuring the fundamental properties of matter has had a large impact on our understanding of the nucleon structure and it has given us decades of research and technological innovation. Despite the large number of discoveries made, many fundamental questions remain open and in need of a new and more precise generation of measurements. The future Electron Ion Collider (EIC) will be a machine dedicated to hadron structure research. It will study the content of protons and neutrons in a largely unexplored regime in which gluons are expected to dominate and eventually saturate. While the EIC will be the machine of choice to quantify this regime, recent surprising results from the heavy ion community have begun to exhibit similar signatures as those expected from a regime dominated by gluons. Many of the heavy ion results that will be discussed in this document highlight the kinematic limitations of hadron–hadron and hadron–nucleus collisions. The reliability of using as a reference proton–proton (pp) and proton–ion (pA) collisions to quantify and disentangle vacuum and Cold Nuclear Matter (CNM) effects from those proceeding from a Quark Gluon Plasma (QGP) may be under question. A selection of relevant pp and pA results which highlight the need of an EIC will be presented.


2008 ◽  
Vol 38 (4) ◽  
pp. 535-568 ◽  
Author(s):  
Robert P. Crease

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory was the first facility to move the subfield of nuclear physics into the relativistic (very high-energy) regime. From the time of its formal proposal in 1984 to the start of its operation in 2000, it anchored a profound reconfiguration of Brookhaven's mission. This article analyzes the process by which RHIC came to seem the best solution to a problem thrust upon the Brookhaven laboratory administration by the planning and funding demands of the early 1980s, which required creative reconfiguration of resources and programs from long-established national laboratories accustomed to pursuing particular kinds of science. The RHIC story is an example of "recombinant science," as Catherine Westfall has labeled it, which does not occur as a natural outgrowth of previous research. In the recombinant science that gave birth to RHIC, the ends as well as the means arose as the result of contingencies and convergences that required researchers from multiple subfields to adapt their intentions and methods, sometimes awkwardly. Against a backdrop of limited budgets, increasing oversight, and competitive claims from other labs and projects, this case study illustrates how many strands had to come together simultaneously in RHIC, including changes in theoretical interest, experimental developments, and the existence of hardware assets---plus leadership and several lucky breaks.


2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Ye-Yin Zhao ◽  
Ya-Hui Chen ◽  
Ya-Qin Gao ◽  
Fu-Hu Liu

The inclusive particle productions in proton-proton (pp) and deuton-gold (d+Au) collisions at forward rapidity at the Relativistic Heavy Ion Collider (RHIC) energy are studied in the framework of the color glass condensate (CGC) theory by using two different initial conditions: AAMQS (Albacete-Armesto-Milhano-Quiroga-Salgado) and quartic action. Then, the results obtained by the two different initial conditions in illustrating the effect of valence color charges in high-energy proton-nucleus (pA) collisions at forward energy are compared. Meanwhile, the inclusive particle productions inpAcollisions at forward rapidity at the Large Hadron Collider (LHC) energies are predicted. The main dynamical input in our calculations is the use of solutions of the running coupling Balitsky-Kovchegov equation tested in electron-proton (ep) collision data. Particle production is computed via the hybrid formalisms to obtain spectra and yields. These baseline predictions are useful for testing the current understanding of the dynamics of very strong color fields against the upcoming LHC data.


2014 ◽  
Vol 07 ◽  
pp. 49-76 ◽  
Author(s):  
Wolfram Fischer ◽  
John M. Jowett

High energy ion colliders are large research tools in nuclear physics for studying the quark–gluon–plasma (QGP). The collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead, and uranium. Asymmetric collision combinations (such as protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders: the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 47
Author(s):  
Luca Barioglio

At the Large Hadron Collider (LHC) a significant production of (anti-)(hyper-)nuclei is observed in proton-proton (pp), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions. The measurement of the production yields of light (anti-)nuclei is extremely important to provide insight into the production mechanisms of nuclear matter, which is still an open question in high energy physics. The outstanding particle identification (PID) capabilities of the ALICE detectors allow the identification of rarely produced particles such as deuterons, 3 He and their antiparticles. From the production spectra measured for light (anti-)nuclei with ALICE, the key observables of the production mechanisms (antimatter/matter ratio, coalescence parameter, nuclei/protons ratio) are computed and compared with the available theoretical models. Another open question is the determination of the hypertriton lifetime: published experimental values show a lifetime shorter than the expected one, which should be close to that of the free Λ hyperon. Thanks to the high-resolution track reconstruction capabilities of the ALICE experiment, it has been possible to determine the hypertriton lifetime at the highest Pb-Pb collisions energy with the highest precision ever reached.


2002 ◽  
Vol 20 (3) ◽  
pp. 485-491 ◽  
Author(s):  
D. VARENTSOV ◽  
P. SPILLER ◽  
N.A. TAHIR ◽  
D.H.H. HOFFMANN ◽  
C. CONSTANTIN ◽  
...  

At the Gesellschaft für Schwerionenforschung (GSI, Darmstadt) intense beams of energetic heavy ions have been used to generate high-energy-density (HED) state in matter by impact on solid targets. Recently, we have developed a new method by which we use the same heavy ion beam that heats the target to provide information about the physical state of the interior of the target (Varentsov et al., 2001). This is accomplished by measuring the energy loss dynamics (ELD) of the beam emerging from the back surface of the target. For this purpose, a new time-resolving energy loss spectrometer (scintillating Bragg-peak (SBP) spectrometer) has been developed. In our experiments we have measured energy loss dynamics of intense beams of 238U, 86Kr, 40Ar, and 18O ions during the interaction with solid rare-gas targets, such as solid Ne and solid Xe. We observed continuous reduction in the energy loss during the interaction time due to rapid hydrodynamic response of the ion-beam-heated target matter. These are the first measurements of this kind. Two-dimensional hydrodynamic simulations were carried out using the beam and target parameters of the experiments. The conducted research has established that the ELD measurement technique is an excellent diagnostic method for HED matter. It specifically allows for direct and quantitative comparison with the results of hydrodynamic simulations, providing experimental data for verification of computer codes and underlying theoretical models. The ELD measurements will be used as a standard diagnostics in the future experiments on investigation of the HED matter induced by intense heavy ion beams, such as the HI-HEX (Heavy Ion Heating and EXpansion) EOS studies (Hoffmann et al., 2002).


2019 ◽  
Vol 204 ◽  
pp. 06013
Author(s):  
Sergey M. Eliseev ◽  
Bekhzad S. Yuldashev

Quantum Chromodynamics (QCD) is the correct theory of strong interactions. The main direction of investigations in physics of elementary particles and nuclear physics is testing of QCD. QCD predicts that at high energy density there will be a transformation from ordinary nuclear matter to a plasma of free quarks and gluons, the Quark-Gluon Plasma (QGP). In order to reach new knowledge of QCD from the interaction of relativistic heavy ions, one needs directly comparable data sets from systems of various sizes, different energies and different experimental probes. Lepton-nucleus scattering provides a nontrivial possibility to study space-time evolution of jets inside the nuclear matter. Using QCD-inspired time dependent cross sections for pre-hadrons we have introduced a space-time model for propagation and hadronization of quark and gluon jets in the nuclear matter in DIS. The aim of this work is to examine a multiproduction process of charged-current deep inelastic vμ-nucleus and nuclear emulsion scattering and estimate quantitatively the value of the formation time. These studies may help to explain the jet quenching in heavy ion collisions. In conclusion, the role of neutrino generators in modern neutrino experiments with nuclear targets will be discussed.


1989 ◽  
Vol 04 (06) ◽  
pp. 1319-1394 ◽  
Author(s):  
JERZY BARTKE

A review of relativistic heavy ion reactions is presented, including results of the new generation of high energy experiments at CERN and Brookhaven. Data on cross sections, secondary particle multiplicities and spectra are discussed, together with the question of applicability of the superposition model and other theoretical models. Some place is also devoted to fragmentation processes (electromagnetic and nuclear) and to hypernuclei which can be effectively studied using relativistic heavy ion beams. The problem of estimation of energy density attained in relativistic heavy ion collisions is treated in more detail in connection with the search for a phase transition to quark-gluon plasma.


2001 ◽  
Vol 16 (22) ◽  
pp. 1413-1416
Author(s):  
SUN-YIU FUNG

We describe some research efforts and results in high energy nuclear physics experiments in which the University of California, Riverside Heavy Ion Physics Group was involved. The Group was formed in 1974 by the late Robert T. Poe and the author. The pre-RHIC research spanned an energy range from 1 GeV A at the BEVALAC in LBNL to 10 GeV A at the AGS in BNL.


Sign in / Sign up

Export Citation Format

Share Document