Study of viscosity on the fission dynamics of the excited nuclei 228U produced in 19F + 209Bi reactions

2015 ◽  
Vol 24 (07) ◽  
pp. 1550052 ◽  
Author(s):  
H. Eslamizadeh

A two-dimensional (2D) dynamical model based on Langevin equations was applied to study the fission dynamics of the compound nuclei 228 U produced in 19 F + 209 Bi reactions at intermediate excitation energies. The distance between the centers of masses of the future fission fragments was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, was considered as the second dimension in Langevin dynamical calculations. The magnitude of post-saddle friction strength was inferred by fitting measured data on the average pre-scission neutron multiplicity for 228 U . It was shown that the results of calculations are in good agreement with the experimental data by using values of the post-saddle friction equal to 6–8 × 1021 s -1.

2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


1976 ◽  
Vol 31 (1) ◽  
pp. 84-86 ◽  
Author(s):  
F. Fratev ◽  
H. Hermann ◽  
G. Olbrich ◽  
O. E. Polansky ◽  
M. Zander

CNDO-Cl calculations of triplet-triplet excitation energies on fluorene, carbazole and their monobenzologues are in good agreement with the results from triplet-triplet absorption measurements. An assignment of the observed triplet data is given. It is shown that the quantum-chemical treatment should be useful in cases where the experimental data are difficult to obtain.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250008 ◽  
Author(s):  
H. ESLAMIZADEH

A stochastic approach for fission dynamics based on one-dimensional Langevin equations was applied to investigate the effect of the nuclear dissipation on the prescission neutron multiplicity, fission probability and the fission time for the compound nucleus 210 Po in an intermediate range of excitation energies 30–120 MeV. A modified wall and window dissipation with a reduction coefficient, k s , has been used in the Langevin equations. It was shown that the results of the calculations are in good agreement with the experimental data by using values of k s in the range 0.28 ≤ k s ≤ 0.50.


Author(s):  
H Chen

This paper discusses aerodynamic design methods of volute casings used in turbocharger turbines. A quasi-three-dimensional (Q-3D) design method is proposed in which a group of extended two-dimensional potential flow equations and the streamline equation are numerically solved to obtain the geometry of spiral volutes. A tongue loss model, based on the turbulence wake theory, is also presented, and good agreement with experimental data is shown.


2019 ◽  
Vol 81 (4) ◽  
pp. 488-499
Author(s):  
Wang Cheng ◽  
Yang Tonghui ◽  
Li Wan ◽  
Tao Li ◽  
M.H. Abuziarov ◽  
...  

The spatial problem of internal explosive loading of an elastoplastic cylindrical container filled with water in Eulerian - Lagrangian variables using multigrid algorithms is considered. A defining system of three-dimensional equations of the dynamics of gas, fluid, and elastoplastic medium is presented. For numerical modeling, a modification of S.K. Godunov scheme of the increased accuracy for both detonation products and liquids, and elastoplastic container is used. At the moving contact boundaries “detonation products - liquid”, “liquid - deformable body”, the exact solution of the Riemann's problem is used. A time dependent model is used to describe the propagation of steady-state detonation wave through an explosive from an initiation region. In both cases, the initiation of detonation occurs at the center of the charge. Two problems have been solved: the first task for the aisymmetric position of the charge, the second for the charge shifted relative to the axis of symmetry. In the first task, the processes are two-dimensional axisymmetric in nature, in the second task, the processes are essentially three-dimensional. A comparison is made of the results of calculations of the first problem using a three-dimensional method with a solution using a previously developed two-dimensional axisymmetric method and experimental data. Good agreement is observed between the numerical results for the maximum velocities and circumferential strains obtained by various methods and experimental data. There is good agreement between the numerical results obtained by various methods and the known experimental data. Comparison of the results of solving the first and second problems shows a significant effect of the position of the charge on the wave processes in the liquid, the processes of loading the container and its elastoplastic deformation. The dynamic behavior of a gas bubble with detonation products is analyzed. A significant deviation of the bubble shape from the spherical one, caused by the action of shock waves reflected from the structure, is shown. Comparison of the results of solving the first and second problems showed a significant effect of the charge position on wave processes in a liquid, the processes of loading a container and its elastoplastic deformation. In particular, in the second problem, shock waves of higher amplitude are observed in the liquid when reflected from the walls of the container.


1964 ◽  
Vol 20 (1) ◽  
pp. 1-33 ◽  
Author(s):  
J. P. Uldrick ◽  
J. Siekmann

This paper studies the effect of profile thickness on the propulsive forces generated by the swimming of a two-dimensional fish. Comparison of numerical calculations with reported experimental data shows good agreement and demonstrates a decrease of thrust with increasing thickness. Previous two-dimensional linearized theories on fish propulsion dealing with the motion of an infinitesimally thin hydrofoil are included in the present contribution as special cases.


Author(s):  
Lucas do Vale Machado ◽  
Antonio Carlos Fernandes ◽  
Gustavo César Rachid Bodstein

In this paper we present numerical and experimental work motivated by the study of a rudder profile with significant levels of lift that provides better performance for the maneuvering and stabilization of a ship. This is the so-called Schilling profile. The analysis of the two-dimensional subsonic steady flow over four profiles was carried out using computational fluid dynamics (CFD) tools with a κ-ω SST turbulence model. We consider three Schilling profiles with different thicknesses and the classical NACA 0015 profile, taken as a reference. Simulation results were compared to our experimental measurements at various angles of attack and two orders of magnitude of the Reynolds number, 5.45 × 104 and 1.09 × 105. The numerical results show general good agreement with experimental data and highlight the distinct behavior of Schilling profile.


2017 ◽  
Vol 34 (3) ◽  
Author(s):  
Rui Zhang

AbstractPrediction of the characteristics of turbulent flow with streamline curvature is of great importance in engineering applications. In this paper, a curvature-corrected filter-based turbulent model is suggested by applying the Spalart-Shur correction term. This new version of the model (FBM-CC) has been tested and verified through two canonical benchmarks with strong streamline curvature: the flow in a two-dimensional U-duct and the free shear flow past NACA0012 airfoil with a round tip. Predictions of the FBM-CC model are compared with available experimental data and the corresponding results of the original FBM model. The numerical results show that the FBM-CC model significantly improves the sensitivity to the effect of streamline curvature and the numerical calculation accuracy, in relatively good agreement with the experimental data, which suggests that this proposed model may be employed to simulate the turbulent curved flow in engineering applications.


1994 ◽  
Vol 116 (2) ◽  
pp. 418-426 ◽  
Author(s):  
C. Harley ◽  
A. Faghri

A transient two-dimensional thermosyphon model is presented that accounts for conjugate heat transfer through the wall and the falling condensate film. The complete transient two-dimensional conservation equations are solved for the vapor flow and pipe wall, and the liquid film is modeled using a quasi-steady Nusselt-type solution. The model is verified by comparison with existing experimental data for a low-temperature thermosyphon with good agreement. A typical high-temperature thermosyphon was then simulated to examine the effects of vapor compressibility and conjugate heat transfer.


1961 ◽  
Vol 83 (4) ◽  
pp. 478-483 ◽  
Author(s):  
Serope Kalpakcioglu

The deformation zone in shear-spinning is idealized for a two-dimensional process and maximum permissible thickness reduction without fracture is predicted in terms of the stress system in this zone. The effect of deviation from the sine law on the maximum reduction before fracture is shown analytically to be due to the influence of distortions of the unspun flange on the state of stress under the roller. The results of analytical work are compared with experimental data and good agreement has been obtained. The phenomenon of back extrusion in shear-spinning is shown to be the result of a compressive stress in the spun section parallel to the mandrel side and is greatly influenced by mandrel angle and deviation from the sine law.


Sign in / Sign up

Export Citation Format

Share Document