SCALING OF RETURN TIMES FOR A HIGH-RESOLUTION RAINFALL TIME SERIES

Fractals ◽  
2002 ◽  
Vol 10 (03) ◽  
pp. 285-290 ◽  
Author(s):  
F. SCHMITT ◽  
C. NICOLIS

Rainfall is a highly intermittent field over a wide range of time and space scales. We study a high resolution rainfall time series exhibiting large intensity fluctuations and localized events. We consider the return times of a given intensity, and show that the time series composed of these return times is itself also very intermittent, obeying to a hyperbolic probability density, entailing that the mean return time diverges. This is an unexpected property since mean return times are often introduced in meteorology, especially for the study of risk associated to extreme events. It suggests that the intermittency of first return times of extreme events should be taken into account when making statistical predictions.

2015 ◽  
Vol 28 (2) ◽  
pp. 135-149 ◽  
Author(s):  
U. Falk ◽  
H. Gieseke ◽  
F. Kotzur ◽  
M. Braun

AbstractChanges of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigated the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica, between 25 October 2010 and 19 April 2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. Synthetic aperture radar (SAR) coherence is used to map glacier extent of land-terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR colour composites identify the position of the late summer snow line at ~220 m a.s.l. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8±0.01 m d-1. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated at 20 700±5500 m3 d-1 (corresponding to ~19±5 kt d-1). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products. Supplemental data are available at http://dx.doi.org/10.1594/PANGAEA.853954.


Author(s):  
Wenmin Hu ◽  
Lixin Wu

Recognition and extraction of mining ground deformation can help us understand the deformation process and space distribution, and estimate the deformation laws and trends. This study focuses on the application of ground deformation detection and extraction combining with high resolution visible stereo imagery, LiDAR observation point cloud data and historical data. The DEM in large mining area is generated using high-resolution satellite stereo images, and ground deformation is obtained through time series analysis combined with historical DEM data. Ground deformation caused by mining activities are detected and analyzed to explain the link between the regional ground deformation and local deformation. A district of covering 200 km<sup>2</sup> around the West Open Pit Mine in Fushun of Liaoning province, a city located in the Northeast China is chosen as the test area for example. Regional and local ground deformation from 2010 to 2015 time series are detected and extracted with DEMs derived from ZY-3 images and LiDAR point DEMs in the case study. Results show that the mean regional deformation is 7.1 m of rising elevation with RMS 9.6 m. Deformation of rising elevation and deformation of declining elevation couple together in local area. The area of higher elevation variation is 16.3 km<sup>2</sup> and the mean rising value is 35.8 m with RMS 15.7 m, while the deformation area of lower elevation variation is 6.8 km<sup>2</sup> and the mean declining value is 17.6 m with RMS 9.3 m. Moreover, local large deformation and regional slow deformation couple together, the deformation in local mining activities has expanded to the surrounding area, a large ground fracture with declining elevation has been detected and extracted in the south of West Open Pit Mine, the mean declining elevation of which is 23.1 m and covering about 2.3 km<sup>2</sup> till 2015. The results in this paper are preliminary currently; we are making efforts to improve more precision results with invariant ground control data for validation.


Ocean Science ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 511-521 ◽  
Author(s):  
E. van Sebille ◽  
C. N. Barron ◽  
A. Biastoch ◽  
P. J. van Leeuwen ◽  
F. C. Vossepoel ◽  
...  

Abstract. The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression.


2009 ◽  
Vol 6 (2) ◽  
pp. 1193-1221 ◽  
Author(s):  
E. van Sebille ◽  
C. N. Barron ◽  
A. Biastoch ◽  
P. J. van Leeuwen ◽  
F. C. Vossepoel ◽  
...  

Abstract. The relation between the Agulhas Current retroflection location and the magnitude of Agulhas leakage, the transport of water from the Indian to the Atlantic Ocean, is investigated in a high-resolution numerical ocean model. Sudden eastward retreats of the Agulhas Current retroflection loop are linearly related to the shedding of Agulhas rings, where larger retreats generate larger rings. Using numerical Lagrangian floats a 37 year time series of the magnitude of Agulhas leakage in the model is constructed. The time series exhibits large amounts of variability, both on weekly and annual time scales. A linear relation is found between the magnitude of Agulhas leakage and the location of the Agulhas Current retroflection, both binned to three month averages. In the relation, a more westward location of the Agulhas Current retroflection corresponds to an increased transport from the Indian Ocean to the Atlantic Ocean. When this relation is used in a linear regression and applied to almost 20 years of altimetry data, it yields a best estimate of the mean magnitude of Agulhas leakage of 13.2 Sv. The early retroflection of 2000, when Agulhas leakage was probably halved, can be identified using the regression.


2013 ◽  
Vol 17 (7) ◽  
pp. 2487-2500 ◽  
Author(s):  
D. Lisniak ◽  
J. Franke ◽  
C. Bernhofer

Abstract. The use of multiplicative random cascades (MRCs) for temporal rainfall disaggregation has been extensively studied in the past. MRCs are appealing for rainfall disaggregation due to their formal simplicity and the possibility to extract the model parameters directly from observed high resolution rainfall data. These parameters, however, represent the rainfall characteristics of the observation period. Since rainfall characteristics of different time slices are changing due to climate variability, we propose a parameterization approach for MRCs to adjust the parameters according to past (observed) or future (projected) time series. This is done on the basis of circulation patterns (CPs) by extracting a distinct MRC parameterization from high resolution rainfall data, as observed on days governed by each individual CP. The parameterization approach is tested by comparing the statistical properties of disaggregated rainfall time series of two time slices, 1969–1979 and 1989–1999, to the results obtained by two other disaggregation methods (a conceptually similar MRC without CP-based parameterization and a recombination approach) and to the statistical properties of observed hourly rainfall data. In this context, all three approaches use rainfall data of the time slice 1989–1999 for parameterization. We found that the inclusion of CPs into the parameterization of a MRC yields hourly time series that better reproduce the properties of observed rainfall in time slice 1989–1999, as compared to the simple MRC. Despite similar results of both MRCs in the validation period of 1969–1979, we can conclude that the CP-based parameterization approach is applicable for temporal rainfall disaggregation in time slices distinct from the parameterization period. This approach accounts for changes in rainfall characteristics due to changes in the frequency of occurrence of the CPs and allows generating hourly rainfall from daily data, as often provided by a statistical downscaling of global climate change.


2012 ◽  
Vol 9 (9) ◽  
pp. 10115-10149 ◽  
Author(s):  
D. Lisniak ◽  
J. Franke ◽  
C. Bernhofer

Abstract. The use of multiplicative random cascades (MRCs) for temporal rainfall disaggregation has been extensively studied in the past. MRCs are appealing for rainfall disaggregation due to their formal simplicity and the possibility to extract the model parameters directly from observed high resolution rainfall data. These parameters, however, represent the rainfall characteristics of the observation period. Since rainfall characteristics of different time slices are changing due to climate variability, we propose a parameterization approach for MRCs to adjust the parameters according to past (observed) or future (projected) time series. This is done on the basis of circulation patterns (CPs) by extracting a distinct MRC parameterization from high resolution rainfall data, as observed on days governed by each individual CP. The parameterization approach is tested by comparing the statistical properties of disaggregated rainfall time series of two time slices, 1969–1979 and 1989–1999, to the results obtained by two other disaggregation methods (a conceptually similar MRC without CP-based parameterization and a recombination approach) and to the statistical properties of observed hourly rainfall data. In this context, all three approaches use rainfall data of the time slice 1989–1999 for parameterization. We found that the inclusion of CPs into the parameterization of a MRC yields hourly time series that better reproduce the properties of observed rainfall in time slice 1989–1999, as compared to the simple MRC. Despite similar properties of both MRCs for the time slice 1969–1979, we can conclude that the CP-based parameterization approach is applicable for temporal rainfall disaggregation in time slices distinct from the parameterization period. This approach accounts for changes in rainfall characteristics due to changes in the frequency of occurrence of the CPs and allows generating hourly rainfall from daily data, as often provided by a statistical downscaling of global climate change.


2015 ◽  
Vol 19 (10) ◽  
pp. 4327-4344 ◽  
Author(s):  
J. P. Bloomfield ◽  
B. P. Marchant ◽  
S. H. Bricker ◽  
R. B. Morgan

Abstract. Groundwater drought is a spatially and temporally variable phenomenon. Here we describe the development of a method to regionally analyse and quantify groundwater drought. The method uses a cluster analysis technique (non-hierarchical k-means) to classify standardised groundwater level hydrographs (the standardised groundwater level index, SGI) prior to analysis of their groundwater drought characteristics, and has been tested using 74 groundwater level time series from Lincolnshire, UK. Using the test data set, six clusters of hydrographs have been identified. For each cluster a correlation can be established between the mean SGI and a mean standardised precipitation index (SPI), where each cluster is associated with a different SPI accumulation period. Based on a comparison of SPI time series for each cluster and for the study area as a whole, it is inferred that the clusters are independent of the driving meteorology and are primarily a function of catchment and hydrogeological factors. This inference is supported by the observation that the majority of sites in each cluster are associated with one of the principal aquifers in the study region. The groundwater drought characteristics of the three largest clusters, which constitute ~ 80 % of the sites, have been analysed. There are differences in the distributions of drought duration, magnitude and intensity of groundwater drought events between the three clusters as a function of autocorrelation of the mean SGI time series for each cluster. In addition, there are differences between the clusters in their response to three major multi-annual droughts that occurred during the analysis period. For example, sites in the cluster with the longest SGI autocorrelation experience the greatest-magnitude droughts and are the slowest to recover from major droughts, with groundwater drought conditions typically persisting at least 6 months longer than at sites in the other clusters. Membership of the clusters is shown to be related to unsaturated zone thickness at individual boreholes. This last observation emphasises the importance of catchment and aquifer characteristics as (non-trivial) controls on groundwater drought hydrographs. The method of analysis is flexible and can be adapted to a wide range of hydrogeological settings while enabling a consistent approach to the quantification of regional differences in response of groundwater to meteorological drought.


2021 ◽  
Author(s):  
Solomon Hailu Gebrechorkos ◽  
Ming Pan ◽  
Peirong Lin ◽  
David Pritchard ◽  
Nathan Forsythe ◽  
...  

<p>Hydrological extreme events such as droughts and floods have a wide range of impacts on society and sectors such as agriculture and energy production. The impact of these extremes are projected to increase with future climate change and there is an urgent need to develop adaptation measures to reduce and manage the impacts. Long-term analysis of hydrological extremes, using a combination of models and climate data, helps better plan and manage water resources under global change. In this study, we modelled and analyzed hydrological extremes of the Volta river basin at very high-resolution (>10000 river reaches) using the Variable Infiltration Capacity (VIC) hydrological model, the vector-based river network routing model (RAPID), and high-resolution meteorological forcing datasets. The output from the VIC model is evaluated at multiple time scales (daily to annual) and for extreme events (droughts and floods) using observed streamflow data during the period 1979-2013.  The model performed very well in areas less affected by dams, with performance increasing from daily to annual time scale. The modelled streamflow data is used to assess changes and variability in droughts (duration days and severity) and floods (annual daily maximum). The results show a decreasing and increasing trend in moderate and severe droughts in northern-eastern and southern parts of the basin, respectively. An increasing trend in floods is observed in the upper part of the basin (Black and White Volta) and the main river of the Lower Volta and we found a strong correlation with changes in precipitation and soil moisture.</p>


Author(s):  
Louis Goodman ◽  
Allan R Robinson

A nonlinear model for biological and physical dynamical interactions in a laminar upwelling flow field in parts I and II of this study is extended to turbulent flow. In the previous studies, a prescription for obtaining quadrature solutions to the fundamental biodynamical equations was developed. In this study, we use a probability density function approach on these solutions to obtain statistics of the biodynamical state variables and their self-interaction for the case of turbulent advection. To illustrate the theory, a simple nutrient ( N ), phytoplankton ( P ) problem is considered, that of upwelling into a surface turbulent layer. Biological interaction is modelled as bilinear, representing the uptake of N by P in a uniform light euphotic zone. A random walk model is used to obtain the appropriate probability density function for the advective turbulent field. The mean quantities, , , as well as the biological interaction term are calculated. The term has two contributions, , and the turbulence-induced interaction term, . It is shown that the often neglected turbulence-induced coupling term is of the order and opposite in sign. This results in, over a wide range of Peclet numbers, the mean interaction term being significantly smaller than either of its constituent terms, and .


Sign in / Sign up

Export Citation Format

Share Document