EVOLUTION OF FRACTAL DIMENSIONS AND GAS TRANSPORT MODELS DURING THE GAS RECOVERY PROCESS FROM A FRACTURED SHALE RESERVOIR

Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950129 ◽  
Author(s):  
BOWEN HU ◽  
J. G. WANG ◽  
ZHONGQIAN LI ◽  
HUIMIN WANG

Previous studies ignore the evolutions of pore microstructure parameters (pore diameter fractal dimension [Formula: see text] and tortuosity fractal dimension [Formula: see text]) but these evolutions may significantly impact the gas transport during gas extraction. In order to investigate these evolutions of fractal dimension properties during gas extraction, following four aspects are studied. Firstly, surface diffusion in adsorbed multilayer is modeled for fractal shale matrix. Our new matrix permeability model considers the slip flow, Knudsen diffusion and surface diffusion. This model is verified by experimental data. Secondly, a new fracture permeability model is proposed based on fractal theory and the coupling of viscous flow and Knudsen diffusion. Thirdly, the multilayer adsorption and these permeability models are introduced into the equations of gas flow and reservoir deformation. Finally, sensitivity analysis is performed to determine the key factors on fractal dimension evolution. The results show that the multilayer adsorption can accurately describe the adsorption properties of real shale reservoir. Shale reservoir deformation and gas desorption govern the evolutions of fractal dimensions. The multilayer adsorption and adsorbed gas porosity [Formula: see text] play an important role in the evolutions of fractal dimensions during gas extraction. The monolayer saturated adsorption volume [Formula: see text] is the most sensitive parameter affecting the evolution of fractal dimensions. Therefore, the effects of gas adsorption on the evolution of fractal dimensions cannot be neglected in shale reservoirs.

Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050017 ◽  
Author(s):  
TAO WU ◽  
SHIFANG WANG

A better comprehension of the behavior of shale gas transport in shale gas reservoirs will aid in predicting shale gas production rates. In this paper, an analytical apparent permeability expression for real gas is derived on the basis of the fractal theory and Fick’s law, with adequate consideration of the effects of Knudsen diffusion, surface diffusion and flexible pore shape. The gas apparent permeability model is found to be a function of microstructural parameters of shale reservoirs, gas property, Langmuir pressure, shale reservoir temperature and pressure. The results show that the apparent permeability increases with the increase of pore area fractal dimension and the maximum effective pore radius and decreases with an increase of the tortuosity fractal dimension; the effects of Knudsen diffusion and surface diffusion on the total apparent permeability cannot be ignored under high-temperature and low-pressure circumstances. These findings can contribute to a better understanding of the mechanism of gas transport in shale reservoirs.


2019 ◽  
Vol 17 (1) ◽  
pp. 168-181 ◽  
Author(s):  
Qi Zhang ◽  
Wen-Dong Wang ◽  
Yilihamu Kade ◽  
Bo-Tao Wang ◽  
Lei Xiong

Abstract Different from the conventional gas reservoirs, gas transport in nanoporous shales is complicated due to multiple transport mechanisms and reservoir characteristics. In this work, we presented a unified apparent gas permeability model for real gas transport in organic and inorganic nanopores, considering real gas effect, organic matter (OM) porosity, Knudsen diffusion, surface diffusion, and stress dependence. Meanwhile, the effects of monolayer and multilayer adsorption on gas transport are included. Then, we validated the model by experimental results. The influences of pore radius, pore pressure, OM porosity, temperature, and stress dependence on gas transport behavior and their contributions to the total apparent gas permeability (AGP) were analyzed. The results show that the adsorption effect causes Kn(OM) > Kn(IM) when the pore pressure is larger than 1 MPa and the pore radius is less than 100 nm. The ratio of the AGP over the intrinsic permeability decreases with an increase in pore radius or pore pressure. For nanopores with a radius of less than 10 nm, the effects of the OM porosity, surface diffusion coefficient, and temperature on gas transport cannot be negligible. Moreover, the surface diffusion almost dominates in nanopores with a radius less than 2 nm under high OM porosity conditions. For the small-radius and low-pressure conditions, gas transport is governed by the Knudsen diffusion in nanopores. This study focuses on revealing gas transport behavior in nanoporous shales.


2021 ◽  
Author(s):  
Zizhong Liu ◽  
Hamid Emami-Meybodi

Abstract This paper presents a continuum-scale diffusion-based model informed by pore-scale data for gas transport in organic nanoporous media. A mass transfer and adsorption model is developed by considering multiple transport and storage mechanisms, including bulk diffusion and Knudsen diffusion for free phase, surface diffusion for sorbed phase, and multilayer adsorption. The continuum-scale diffusion-based governing equation is developed solely based on free phase concentration for the overall mass conservation of free and sorbed phases, carrying a newly-defined effective diffusion coefficient and a capacity factor to account for multilayer adsorption. Diffusion of free and sorbed phases is coupled through the pore-scale simplified local density method based on the modified Peng-Robinson equation of state for confinement effects. The model is first utilized to analyze pore-scale adsorption data from the krypton (Kr) gas adsorption experiment on graphite. Then we implement the model to conduct sensitivity analysis for the effects of pore size on gas transport for Kr-graphite and methane-coal systems. The model is finally used to study Kr diffusion profiles through a coal matrix obtained through X-ray micro-CT imaging. The results show that the sorbed phase occupies most of the pore space in organic nanoporous media due to multilayer adsorption, and surface diffusion contributes significantly to the total mass flux. Therefore, neglecting the volume of sorbed phase and surface diffusion in organic nanoporous rocks may result in considerable errors. Furthermore, the results reveal that implementing a Langmuir-based model may be erroneous for an organic-rich reservoir with nanopores during the early depletion period when the reservoir pressure is high.


1995 ◽  
Vol 09 (12) ◽  
pp. 1429-1451 ◽  
Author(s):  
WŁODZIMIERZ SALEJDA

The microscopic harmonic model of lattice dynamics of the binary chains of atoms is formulated and studied numerically. The dependence of spring constants of the nearest-neighbor (NN) interactions on the average distance between atoms are taken into account. The covering fractal dimensions [Formula: see text] of the Cantor-set-like phonon spec-tra (PS) of generalized Fibonacci and non-Fibonaccian aperiodic chains containing of 16384≤N≤33461 atoms are determined numerically. The dependence of [Formula: see text] on the strength Q of NN interactions and on R=mH/mL, where mH and mL denotes the mass of heavy and light atoms, respectively, are calculated for a wide range of Q and R. In particular we found: (1) The fractal dimension [Formula: see text] of the PS for the so-called goldenmean, silver-mean, bronze-mean, dodecagonal and Severin chain shows a local maximum at increasing magnitude of Q and R>1; (2) At sufficiently large Q we observe power-like diminishing of [Formula: see text] i.e. [Formula: see text], where α=−0.14±0.02 and α=−0.10±0.02 for the above specified chains and so-called octagonal, copper-mean, nickel-mean, Thue-Morse, Rudin-Shapiro chain, respectively.


2012 ◽  
Vol 204-208 ◽  
pp. 1923-1928
Author(s):  
Bo Tan ◽  
Rui Hua Yang ◽  
Yan Ting Lai

The paper presents the fractal dimension formula of distribution of asphalt mixture aggregate diameter by the deducing mass fractal characteristics function. Taking AC-20 and SMA-20 as examples, selected 6 groups of representative grading curves within the grading envelope proposed by the present specification, and calculated their fractal dimensions. The asphalt mixture gradation has fractal dimension D (D∈(1,3)), and the fractal of continuous gradation is single while the fractal of gap-gradation shows multi-fractal with 4.75 as the dividing point. Fractal dimension of aggregate gradation of asphalt mixture reflect the structure characteristics of aggregate distribution, that is, finer is aggregate, bigger is the fractal dimension.


SPE Journal ◽  
2021 ◽  
pp. 1-26
Author(s):  
Zizhong Liu ◽  
Hamid Emami-Meybodi

Summary The complex pore structure and storage mechanism of organic-rich ultratight reservoirs make the hydrocarbon transport within these reservoirs complicated and significantly different from conventional oil and gas reservoirs. A substantial fraction of pore volume in the ultratight matrix consists of nanopores in which the notion of viscous flow may become irrelevant. Instead, multiple transport and storage mechanisms should be considered to model fluid transport within the shale matrix, including molecular diffusion, Knudsen diffusion, surface diffusion, and sorption. This paper presents a diffusion-based semianalytical model for a single-component gas transport within an infinite-actingorganic-rich ultratight matrix. The model treats free and sorbed gas as two phases coexisting in nanopores. The overall mass conservation equation for both phases is transformed into one governing equation solely on the basis of the concentration (density) of the free phase. As a result, the partial differential equation (PDE) governing the overall mass transport carries two newly defined nonlinear terms; namely, effective diffusion coefficient, De, and capacity factor, Φ. The De term accounts for the molecular, Knudsen, and surface diffusion coefficients, and the Φ term considers the mass exchange between free and sorbed phases under sorption equilibrium condition. Furthermore, the ratio of De/Φ is recognized as an apparent diffusion coefficient Da, which is a function of free phase concentration. The nonlinear PDE is solved by applying a piecewise-constant-coefficient technique that divides the domain under consideration into an arbitrary number of subdomains. Each subdomain is assigned with a constant Da. The diffusion-based model is validated against numerical simulation. The model is then used to investigate the impact of surface and Knudsen diffusion coefficients, porosity, and adsorption capacity on gas transport within the ultratight formation. Further, the model is used to study gas transport and production from the Barnett, Marcellus, and New Albany shales. The results show that surface diffusion significantly contributes to gas production in shales with large values of surface diffusion coefficient and adsorption capacity and small values of Knudsen diffusion coefficient and total porosity. Thus, neglecting surface diffusion in organic-rich shales may result in the underestimation of gas production.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950121 ◽  
Author(s):  
TONGJUN MIAO ◽  
AIMIN CHEN ◽  
YAN XU ◽  
SUJUN CHENG ◽  
BOMING YU

The transfer of fluids from porous matrix to fracture is a key issue to accurately predict the fluid flow behavior in porous–fracture media. In this work, to take into account the transfer of fluids, the analytical model of dimensionless permeability is proposed based on the fractal geometry theory for porous media. The proposed model is expressed as a function of microstructural parameters of the porous matrix and fracture, such as the pore area fractal dimension [Formula: see text], fractal dimension [Formula: see text] for tortuosity of tortuous capillaries, the ratio [Formula: see text] of the maximum pore size in porous matrix to fracture aperture, as well as the ratio [Formula: see text] of the pressure difference along the fracture to that along the porous matrix layers. The model reveals that the ratios [Formula: see text] and [Formula: see text] have significant influences on the permeability contribution from the porous matrix to the seepage behavior of the fracture. While the contribution of porosity of leak-wall porous surface of the fracture to the permeability is less than 10%. The present results may provide an important theoretical foundation for exploration of petroleum, gas and geothermal energy extraction systems.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3381 ◽  
Author(s):  
Qiang Wang ◽  
Yongquan Hu ◽  
Jinzhou Zhao ◽  
Lan Ren ◽  
Chaoneng Zhao ◽  
...  

Based on fractal geometry theory, the Hagen–Poiseuille law, and the Langmuir adsorption law, this paper established a mathematical model of gas flow in nano-pores of shale, and deduced a new shale apparent permeability model. This model considers such flow mechanisms as pore size distribution, tortuosity, slippage effect, Knudsen diffusion, and surface extension of shale matrix. This model is closely related to the pore structure and size parameters of shale, and can better reflect the distribution characteristics of nano-pores in shale. The correctness of the model is verified by comparison with the classical experimental data. Finally, the influences of pressure, temperature, integral shape dimension of pore surface and tortuous fractal dimension on apparent permeability, slip flow, Knudsen diffusion and surface diffusion of shale gas transport mechanism on shale gas transport capacity are analyzed, and gas transport behaviors and rules in multi-scale shale pores are revealed. The proposed model is conducive to a more profound and clear understanding of the flow mechanism of shale gas nanopores.


2021 ◽  
Vol 11 (5) ◽  
pp. 2217-2232
Author(s):  
Jiangtao Li ◽  
Jianguang Wei ◽  
Liang Ji ◽  
Anlun Wang ◽  
Gen Rong ◽  
...  

AbstractIt is difficult to predict the flow performance in the nanopore networks since traditional assumptions of Navier–Stokes equation break down. At present, lots of attempts have been employed to address the proposition. In this work, the advantages and disadvantages of previous analytical models are seriously analyzed. The first type is modifying a mature equation which is proposed for a specified flow regime and adapted to wider application scope. Thus, the first-type models inevitably require empirical coefficients. The second type is weight superposition based on two different flow mechanisms, which is considered as the reasonable establishment method for universal non-empirical gas-transport model. Subsequently, in terms of slip flow and Knudsen diffusion, the novel gas-transport model is established in this work. Notably, the weight factors of slip flow and Knudsen diffusion are determined through Wu’s model and Knudsen’s model respectively, with the capacity to capture key transport mechanism through nanopores. Capturing gas flow physics at nanoscale allows the proposed model free of any empirical coefficients, which is also the main distinction between our work and previous research. Reliability of proposed model is verified by published molecular simulation results as well. Furthermore, a novel permeability model for coal/shale matrix is developed based on the non-empirical gas-transport model. Results show that (a) nanoconfined gas-transport capacity will be strengthened with the decline of pressure and the decrease in the pressure is supportive for the increasing amplitude; (b) the greater pore size the nanopores is, the stronger the transport capacity the nanotube is; (c) after field application with an actual well in Fuling shale gas field, China, it is demonstrated that numerical simulation coupled with the proposed permeability model can achieve better historical match with the actual production performance. The investigation will contribute to the understanding of nanoconfined gas flow behavior and lay the theoretical foundation for next-generation numerical simulation of unconventional gas reservoirs.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 698-719 ◽  
Author(s):  
Di Chai ◽  
Zhaoqi Fan ◽  
Xiaoli Li

Summary A new unified gas-transport model has been developed to characterize single-component real-gas flow in nanoscale organic and inorganic porous media by modifying the Bravo (2007) model. More specifically, a straight capillary tube is characterized by a conceptual layered model consisting of a viscous-flow zone, a Knudsen-diffusion zone, and a surface-diffusion zone. To specify the contributions of the viscous flow and the Knudsen diffusion to the gas transport, the virtual boundary between the viscous-flow and Knudsen-diffusion zones is first determined using an analytical molecular-kinetics approach. As such, the new unified gas-transport model is derived by integrating the weighted viscous flow and Knudsen diffusion, and coupling surface diffusion. The model is also comprehensively scaled up to the bundles-of-tubes model considering the roughness, rarefaction, and real-gas effect. Nonlinear programming methods have been used to optimize the empirical parameters in the newly proposed gas-transport model. Consequently, the newly proposed gas-transport model yields the most accurate molar fluxes compared with the Bravo (2007) model and four other analytical models. One of the advantages of the new unified gas-transport model is its great flexibility, because the Knudsen number is included as an independent variable, which also endows the newly proposed model with the capability to cover the full-flow regimes. In addition, the apparent permeability has been mathematically derived from the new unified gas-transport model. A series of simulations has been implemented using methane gas. It is found through sensitivity analysis that apparent permeability is strongly dependent on pore size, porosity, and tortuosity, and weakly dependent on the surface-diffusivity coefficient and pore-surface roughness. The increased viscosity can reduce the total molar flux in the inorganic pores up to 66.0% under the typical shale-gas-reservoir conditions. The viscous-flow mechanism cannot be neglected at any pore sizes under reservoir conditions, whereas the Knudsen diffusion is found to be important when pore size is smaller than 2 nm and pressure is less than 35.0 MPa. The contribution of surface diffusion cannot be ignored when the pore size is smaller than 10 nm and the pressure is less than 15.0 MPa.


Sign in / Sign up

Export Citation Format

Share Document