ESTIMATION OF UNIVERSAL FOR ATMOSPHERIC TURBULENT MULTIFRACTAL INDICES VELOCITY FIELDS

Fractals ◽  
1993 ◽  
Vol 01 (03) ◽  
pp. 568-575 ◽  
Author(s):  
F. SCHMITT ◽  
D. SCHERTZER ◽  
S. LOVEJOY ◽  
Y. BRUNET

We study wind turbulence with the help of universal multifractals, using atmospheric high resolution time series. We empirically determine the three universal indices (H, C1, and α) which are sufficient to characterize the statistics of turbulence. The first, H, which characterizes the conservation of the field, is theoretically and empirically known to be ≈1/3, while C1 corresponds to the inhomogeneity of the mean field (C1=0 for homogeneous fields, and C1>0 for inhomogeneous and intermittent fields). The most important index is the Lévy index α corresponding to the degree of multifractality (0≤α≤2, α=0 for a monofractal). The two latter indices are directly obtained by applying the double trace moment technique (DTM) on the turbulent field. Analyzing various atmospheric velocity measurements we obtain: α≈1.45±0.1 and C1≈0.25±0.1. These results show that atmospheric turbulence has nearly the same multifractal behavior everywhere in the boundary layer, corresponding to unconditionally hard multifractal (α≥1) processes. This describes the entire hierarchy of singularities of the Navier-Stokes equations.

Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


1971 ◽  
Vol 47 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Joseph J. Dudis ◽  
Stephen H. Davis

The critical value RE of the Reynolds number R is predicted by the application of the energy theory. When R < RE, the Ekman layer is the unique steady solution of the Navier-Stokes equations and the same boundary conditions, and is, further, stable in a slightly weaker sense than asymptotically stable in the mean. The critical value RE is determined by numerically integrating the relevant Euler-Lagrange equations. An analytic lower bound to RE is obtained. Comparisons are made between RE and RL, the critical value of R according to linear theory, in order to demark the region of parameter space, RE < R < RL, in which subcritical instabilities are allowable.


Author(s):  
William S. Clark ◽  
Kenneth C. Hall

In this paper, we present a computational fluid dynamic model of the unsteady flow associated with the onset of stall flutter in turbomachinery cascades. The unsteady flow is modeled using the laminar Navier-Stokes equations. We assume that the unsteadiness in the flow is a small harmonic disturbance about the mean or steady flow. Therefore, the unsteady flow is governed by a small-disturbance form of the Navier-Stokes equations. These linear variable coefficient equations are discretized on a deforming computational grid and solved efficiently using a multiple-grid Lax-Wendroff scheme. A number of numerical examples are presented which demonstrate the destabilizing influence of viscosity on the aeroelastic stability of airfoils in cascade, especially for torsional modes of blade vibration.


2013 ◽  
Vol 734 ◽  
pp. 275-316 ◽  
Author(s):  
Rashad Moarref ◽  
Ati S. Sharma ◽  
Joel A. Tropp ◽  
Beverley J. McKeon

AbstractWe study the Reynolds-number scaling and the geometric self-similarity of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier–Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behaviour with Reynolds number in the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it is shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wall-normal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers (${Re}_{\tau } \approx 1{0}^{3} {\unicode{x2013}} 1{0}^{10} $). Results from this low-rank model of the Navier–Stokes equations compare favourably with experimental results in the literature.


2002 ◽  
Vol 465 ◽  
pp. 213-235 ◽  
Author(s):  
D. R. GRAHAM ◽  
J. J. L. HIGDON

Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yat Tin Chow ◽  
Ali Pakzad

<p style='text-indent:20px;'>We consider the three-dimensional stochastically forced Navier–Stokes equations subjected to white-in-time (colored-in-space) forcing in the absence of boundaries. Upper bounds of the mean value of the time-averaged energy dissipation rate are derived directly from the equations for weak (martingale) solutions. This estimate is consistent with the Kolmogorov dissipation law. Moreover, an additional hypothesis of energy balance implies the zeroth law of turbulence in the absence of a deterministic force.</p>


1999 ◽  
Vol 122 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Robert E. Spall ◽  
Blake M. Ashby

Solutions to the incompressible Reynolds-averaged Navier–Stokes equations have been obtained for turbulent vortex breakdown within a slightly diverging tube. Inlet boundary conditions were derived from available experimental data for the mean flow and turbulence kinetic energy. The performance of both two-equation and full differential Reynolds stress models was evaluated. Axisymmetric results revealed that the initiation of vortex breakdown was reasonably well predicted by the differential Reynolds stress model. However, the standard K-ε model failed to predict the occurrence of breakdown. The differential Reynolds stress model also predicted satisfactorily the mean azimuthal and axial velocity profiles downstream of the breakdown, whereas results using the K-ε model were unsatisfactory. [S0098-2202(00)01601-1]


2019 ◽  
Vol 31 (07) ◽  
pp. 1950023 ◽  
Author(s):  
Hui Liu ◽  
Lin Lin ◽  
Chengfeng Sun ◽  
Qingkun Xiao

The stochastic 3D Navier–Stokes equation with damping driven by a multiplicative noise is considered in this paper. The stability of weak solutions to the stochastic 3D Navier–Stokes equations with damping is proved for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text]. The weak solutions converge exponentially in the mean square and almost surely exponentially to the stationary solutions are proved for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text]. The stabilization of these equations is obtained for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text].


2001 ◽  
Vol 123 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Elgin A. Anderson ◽  
Robert E. Spall

The flowfield of dual, parallel planar turbulent jets is investigated experimentally using an x-type hot-wire probe and numerically by solving the Reynolds-averaged Navier-Stokes equations. The performance of both differential Reynolds stress (RSM) and standard k-ε turbulence models is evaluated. Results show that the numerical models predict the merge and combined point characteristics to good accuracy. However, both turbulence models show a narrower width of the jet envelope than measured by experiment. The predicted profiles of the mean velocity along the symmetry plane agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document