Fourier Series Expansion of Irregular Curves

Fractals ◽  
1997 ◽  
Vol 05 (01) ◽  
pp. 105-119 ◽  
Author(s):  
M. Eugenia Montiel ◽  
Alberto S. Aguado ◽  
Ed Zaluska

Fourier theory provides an important approach to shape analyses; many methods for the analysis and synthesis of shapes use a description based on the expansion of a curve in Fourier series. Most of these methods have centered on modeling regular shapes, although irregular shapes defined by fractal functions have also been considered by using spectral synthesis. In this paper we propose a novel representation of irregular shapes based on Fourier analysis. We formulate a parametric description of irregular curves by using a geometric composition defined via Fourier expansion. This description allows us to model a wide variety of fractals which include not only fractal functions, but also fractals belonging to other families. The coefficients of the Fourier expansion can be parametrized in time in order to produce sequences of fractals useful for modeling chaotic dynamics. The aim of the novel characterization is to extend the potential of shape analyses based on Fourier theory by including a definition of irregular curves. The major advantage of this new approach is that it provides a way of studying geometric aspects useful for shape identification and extraction, such as symmetry and similarity as well as invariant features.

2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


2021 ◽  
Author(s):  
Alvin Wong

This research developed a numerical method that solves complicated fluid flow problems without requiring end-user expertise with the solver. This method is capable of obtaining a spatially accurate solution in the same time or better as a skilled user with a conventional solver. An explicit preconditioned multigrid solver was used in this research with a multistage relaxation method. The prosposed method utilizies a database with optimized relaxation method parameters for different local flow and mesh conditions. The parameters are optimized for the relaxation such that the error modes in a complex Fourier series expansion of the residual can be quickly reduced. The convergence time and iteration count of this method was compared against the same solver using default input values, as well as a pre-optimized solver, to simulate a skilled user for various geometries. Improvements in both comparisons were demonstrated.


2021 ◽  
Author(s):  
Alvin Wong

This research developed a numerical method that solves complicated fluid flow problems without requiring end-user expertise with the solver. This method is capable of obtaining a spatially accurate solution in the same time or better as a skilled user with a conventional solver. An explicit preconditioned multigrid solver was used in this research with a multistage relaxation method. The prosposed method utilizies a database with optimized relaxation method parameters for different local flow and mesh conditions. The parameters are optimized for the relaxation such that the error modes in a complex Fourier series expansion of the residual can be quickly reduced. The convergence time and iteration count of this method was compared against the same solver using default input values, as well as a pre-optimized solver, to simulate a skilled user for various geometries. Improvements in both comparisons were demonstrated.


2017 ◽  
Vol 84 (9) ◽  
Author(s):  
Siyuan Bao ◽  
Shuodao Wang ◽  
Bo Wang

A modified Fourier–Ritz approach is developed in this study to analyze the free in-plane vibration of orthotropic annular sector plates with general boundary conditions. In this approach, two auxiliary sine functions are added to the standard Fourier cosine series to obtain a robust function set. The introduction of a logarithmic radial variable simplifies the expressions of total energy and the Lagrangian function. The improved Fourier expansion based on the new variable eliminates all the potential discontinuities of the original displacement function and its derivatives in the entire domain and effectively improves the convergence of the results. The radial and circumferential displacements are formulated with the modified Fourier series expansion, and the arbitrary boundary conditions are simulated by the artificial boundary spring technique. The number of terms in the truncated Fourier series and the appropriate value of the boundary spring retraining stiffness are discussed. The developed Ritz procedure is used to obtain accurate solution with adequately smooth displacement field in the entire solution domain. Numerical examples involving plates with various boundary conditions demonstrate the robustness, precision, and versatility of this method. The method developed here is found to be computationally economic compared with the previous method that does not adopt the logarithmic radial variable.


1995 ◽  
Vol 02 (04) ◽  
pp. 489-494 ◽  
Author(s):  
E.E. MOLA ◽  
A.G. APPIGNANESSI ◽  
J.L. VICENTE ◽  
L. VAZQUEZ ◽  
R.C. SALVAREZZA ◽  
...  

The model for the angular orientational energy (AOE) has been extended to hexagonal submonolayer domains of Ag electrodeposited at a constant overpotential on a C(0001) surface. These domains which are characterized by an epitaxy angle θ=15±5° and an Ag−Ag distance d Ag−Ag =0.330± 0.016 nm, can be considered as precursors of 3D Ag crystal formation, according to a Volmer-Weber type mechanism. Calculations are based upon a simple Hamiltonian evaluated by introducing the concept of the commensurable unit cell. A Fourier series expansion for the substrate potential was used. Results from the model predict the existence of a commensurable cell in agreement with the experimental data derived from STM imaging.


Sign in / Sign up

Export Citation Format

Share Document