XPS AND FTIR STUDIES OF Mo/ZSM-5 CATALYSTS FOR NONOXIDATIVE CONVERSION OF METHANE TO AROMATICS

2001 ◽  
Vol 08 (06) ◽  
pp. 627-632 ◽  
Author(s):  
H. Y. CHEN ◽  
S. TANG ◽  
Z. Y. ZHONG ◽  
J. LIN ◽  
K. L. TAN

In this investigation, several Mo/ZSM-5 catalysts with various Mo loadings and various reaction times were prepared, and methane conversion to aromatics without the presence of oxygen was studied by microreactor evaluation, FTIR and XPS. It was found, for the first time, that oxygen treatment before the reaction could shorten the induction period of this reaction. In situ FTIR study indicated the formation of [Formula: see text] species ( 888 cm -1) and O–Al ( 670 cm -1) on the surface of the catalyst as a result of the oxygen treatment. The two IR bands shifted to 854 and 659 cm -1 respectively when 18 O 2 was used. These oxygen species may take part in the initial reaction and shorten the induction time. The XPS study revealed the coexistence of Mo 2 C and MoO 3 species on working catalyst surfaces, and a proper Mo 2 C/MoO 3 ratio (~0.38) was identified for the best aromatization Mo/ZSM-5 catalyst. The active sites for methane conversion to aromatics should include Mo oxide as well as Mo carbide.

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 545 ◽  
Author(s):  
Xueting Wang ◽  
Natalia Martin ◽  
Johan Nilsson ◽  
Stefan Carlson ◽  
Johan Gustafson ◽  
...  

Powder materials containing copper ions supported on ZSM-5 (Cu-Zeolite Socony Mobil-5) and SSZ-13 (Cu-Standard Oil synthesised zeolite-13), and predominantly CuO nanoparticles on amorphous SiO 2 were synthesised, characterised, wash-coated onto ceramic monoliths and, for the first time, compared as catalysts for direct conversion of methane to methanol (DCMM) at ambient pressure (1 atm) using O 2 , N 2 O and NO as oxidants. Methanol production was monitored and quantified using Fourier transform infrared spectroscopy. Methanol is formed over all monolith samples, though the formation is considerably higher for the copper-exchanged zeolites. Hence, copper ions are the main active sites for DCMM. The minor amount of methanol produced over the Cu/SiO 2 sample, however, suggests that zeolites are not the sole substrate that can host those active copper sites but also silica. Further, we present the first ambient pressure in situ infrared spectroscopic measurements revealing the formation and consumption of surface methoxy species, which are considered to be key intermediates in the DCMM reaction.


Science ◽  
2020 ◽  
Vol 367 (6474) ◽  
pp. 193-197 ◽  
Author(s):  
Zhu Jin ◽  
Liang Wang ◽  
Erik Zuidema ◽  
Kartick Mondal ◽  
Ming Zhang ◽  
...  

Selective partial oxidation of methane to methanol suffers from low efficiency. Here, we report a heterogeneous catalyst system for enhanced methanol productivity in methane oxidation by in situ generated hydrogen peroxide at mild temperature (70°C). The catalyst was synthesized by fixation of AuPd alloy nanoparticles within aluminosilicate zeolite crystals, followed by modification of the external surface of the zeolite with organosilanes. The silanes appear to allow diffusion of hydrogen, oxygen, and methane to the catalyst active sites, while confining the generated peroxide there to enhance its reaction probability. At 17.3% conversion of methane, methanol selectivity reached 92%, corresponding to methanol productivity up to 91.6 millimoles per gram of AuPd per hour.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Javier Patarroyo ◽  
Jorge A. Delgado ◽  
Florind Merkoçi ◽  
Aziz Genç ◽  
Guillaume Sauthier ◽  
...  

AbstractIn the present work, hollow PdAg-CeO2 heterodimer nanocrystals (NCs) were prepared and tested as catalysts for the selective hydrogenation of alkynes. These nanostructures combine for the first time the beneficial effect of alloying Pd with Ag in a single NC hollow domain with the formation of active sites at the interface with the CeO2 counterpart in an additive manner. The PdAg-CeO2 NCs display excellent alkene selectivity for aliphatic alkynes. For the specific case of hydrogenation of internal alkynes such as 4-octyne, very low over-hydrogenation and isomerization products were observed over a full conversion regime, even after prolonged reaction times. These catalytic properties were remarkably superior in comparison to standard catalysts. The promotion of Ag on the moderation of the reactivity of the Pd phase, in combination with the creation of interfacial sites with the CeO2 moiety in the same nanostructure, is pointed as the responsible of such a remarkable catalytic performance.


2018 ◽  
Vol 90 (11) ◽  
pp. 1685-1701 ◽  
Author(s):  
Elena V. Golubina ◽  
Tatiana N. Rostovshchikova ◽  
Ekaterina S. Lokteva ◽  
Konstantin I. Maslakov ◽  
Sergey A. Nikolaev ◽  
...  

Abstract NiPd bimetallic systems were for the first time synthesized by laser electrodispersion (LED) of the Ni77Pd23 alloy target followed by the deposition of produced bimetallic particles on a TEM copper grid and alumina granules. Selective area energy-dispersive analysis confirms the bimetallic nature of NiPd particles deposited on a TEM copper grid. Their mean size is 1.0 nm according to TEM. XPS data demonstrate that under deposition on alumina granules (total metal content of 0.005 wt.%), nickel in bimetallic particles nearly completely oxidizes to Ni2+ species predominantly in the form of aluminate. At the same time major part of palladium (84%) exists in Pd0 but oxidizes to Pd2+ (80%) during 6 months storage in air. Both metals are deposited on the external surface of alumina granules and localized in the same areas. In situ reduction of both metals by H2 in the catalytic cell of XPS spectrometer is hindered. Nickel is not reduced even at 450°C, confirming the formation of NiAlOx, whereas palladium is reduced at higher temperatures compared to a similar monometallic catalyst. Nevertheless, NiPd/Al2O3 catalyst is more efficient in gas-phase chlorobenzene hydrodechlorination at 150–350°C than Ni/Al2O3 and even Pd/Al2O3, and much more stable. The difference may be caused by the formation of new active sites due to the contact between Pd0 and NiAlOx-modified support, and the protective action of spinel reacting with HCl by-product.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2018 ◽  
Author(s):  
Yaroslav Boyko ◽  
Christopher Huck ◽  
David Sarlah

<div>The first total synthesis of rhabdastrellic acid A, a highly cytotoxic isomalabaricane triterpenoid, has been accomplished in a linear sequence of 14 steps from commercial geranylacetone. The prominently strained <i>trans-syn-trans</i>-perhydrobenz[<i>e</i>]indene core characteristic of the isomalabaricanes is efficiently accessed in a selective manner for the first time through a rapid, complexity-generating sequence incorporating a reductive radical polyene cyclization, an unprecedented oxidative Rautenstrauch cycloisomerization, and umpolung 𝛼-substitution of a <i>p</i>-toluenesulfonylhydrazone with in situ reductive transposition. A late-stage cross-coupling in concert with a modular approach to polyunsaturated side chains renders this a general strategy for the synthesis of numerous family members of these synthetically challenging and hitherto inaccessible marine triterpenoids.</div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Li ◽  
Xiaoxia Chang ◽  
Haochen Zhang ◽  
Arnav S. Malkani ◽  
Mu-jeng Cheng ◽  
...  

AbstractRigorous electrokinetic results are key to understanding the reaction mechanisms in the electrochemical CO reduction reaction (CORR), however, most reported results are compromised by the CO mass transport limitation. In this work, we determined mass transport-free CORR kinetics by employing a gas-diffusion type electrode and identified dependence of catalyst surface speciation on the electrolyte pH using in-situ surface enhanced vibrational spectroscopies. Based on the measured Tafel slopes and reaction orders, we demonstrate that the formation rates of C2+ products are most likely limited by the dimerization of CO adsorbate. CH4 production is limited by the CO hydrogenation step via a proton coupled electron transfer and a chemical hydrogenation step of CO by adsorbed hydrogen atom in weakly (7 < pH < 11) and strongly (pH > 11) alkaline electrolytes, respectively. Further, CH4 and C2+ products are likely formed on distinct types of active sites.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Christine Landlinger ◽  
Lenka Tisakova ◽  
Vera Oberbauer ◽  
Timo Schwebs ◽  
Abbas Muhammad ◽  
...  

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13–8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.


Sign in / Sign up

Export Citation Format

Share Document