GROWTH AND ELECTRICAL PROPERTIES OF (Bi, Nd)4Ti3O12 THIN FILMS

2004 ◽  
Vol 11 (06) ◽  
pp. 503-507 ◽  
Author(s):  
CHANGHONG YANG ◽  
ZHUO WANG ◽  
DONGYING PAN ◽  
JIANRU HAN ◽  
QINGXIA LI ◽  
...  

Neodymium-doped Bi 4 Ti 3 O 12 ( Bi 3.15 Nd 0.85 Ti 3 O 12) thin films have been synthesized by metalorganic solution decomposition and deposited on SiO 2/ p - Si (111) substrate by spin coating. The structural characteristic and crystallization of the films were examined by X-ray diffraction and atomic force microscope. The insulating property, dielectric constant and dissipation loss were found to be dependent on the annealing temperature. Nonhysteretic C – V curves at various frequencies were also collected. The films in the ON and OFF states were relatively stable.

2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2016 ◽  
Vol 2 (02) ◽  
pp. 61
Author(s):  
Mukhtar Effendi ◽  
Bilalodin B

<span>Iron (Fe) doped titanium dioxide (TiO<span>2<span>) thin films have been successfully deposited by <span>using spin coating technique. X-ray diffraction (XRD) and Scanning Electron Microscope <span>(SEM) were employed to characterize the microstructure and crystallite morphology of the <span>films. It was indicated that the rutile crystal orientation appears due to increasing annealing <span>temperature of the thin films. Furthermore, increasing annealing temperature of the thin <span>films yielded an increasing of porosity value which is related to the application on gas <span>sensor films.</span></span></span></span></span></span><br /></span></span></span>


2004 ◽  
Vol 11 (02) ◽  
pp. 211-215
Author(s):  
CHANGHONG YANG ◽  
ZHUO WANG ◽  
XIUFENG CHENG ◽  
HONGXIA LI ◽  
JIANRU HAN ◽  
...  

A thin-film bilayer structure consisting of polycrystalline Pb 0.85 Sm 0.1 TiO 3 and preferentially (111)-oriented Bi 2 Ti 2 O 7 were prepared using the chemical solution deposition technique. Thin films were deposited by spin-coating. The structural properties of the films were examined by X-ray diffraction. The surface morphology and quality were studied by using an atomic force microscope. The films exhibit a good insulating property and resistance to breakdown. The clockwise hysteresis curve is referred to as polarization type switching, and the memory window is about 3.5 V. The accumulation capacitance and dielectric loss decrease with the increased annealing temperature. The ( Pb, Sm ) TiO 3/ Bi 2 Ti 2 O 7 films in the "on" and "off" states are relatively stable.


2021 ◽  
Vol 14 (1) ◽  
pp. 49-58

Abstract: CdS thin films were synthesized on a glass substrate using spin coating method. The effects of annealing temperature on the optical properties of the prepared CdS films were investigated for different annealing temperatures of 200, 300 and 400 °C. Cadmium acetate, thiourea and ammonia were used as the source materials for the preparation of the thin films. The elemental composition, morphological, optical and structural properties of the films obtained by spin coating were investigated using Energy Dispersive X- ray Spectroscopy (EDAX), Scanning Electron Microscope (SEM), UV Spectrophotometry and X-ray diffraction (XRD) respectively. The SEM image of the unannealed film shows a spherical morphology and an irregular pattern without any void. It also shows that the film covers the substrate well. Annealing leads to an increase in transmittance with the highest transmission of 87% observed for the film annealed at 400oC. With increase in annealing temperature, optical parameters like extinction coefficient and dielectric constants show a reduction, while refractive index and skin depth exhibit an improvement. The absorption coefficient increases with increasing photon energy in the range 3.6 to 4.0 eV. The band gap values of the CdS thin film samples were found to be in the range between 3.14 eV and 3.63 eV. The bandgap is somewhat greater than the value of bulk CdS due to quantum size effect. EDX image confirmed the presence of Cadmium and Sulphur in the prepared CdS films. Annealing did not significantly change the extinction coefficient. The X-ray diffraction confirms the cubic structure of CdS deposited on glass substrate, where reflections from (111), (200), (220) and (311) planes are clearly shown with a preferential orientation along (111) plane. Debye-Scherer equation was used to determine the crystallite size of the most intense plane (111) and the value was found to be 8.4 nm. Keywords: SEM image, Spin coating, Surface morphology, Optical properties, Annealing.


2015 ◽  
Vol 778 ◽  
pp. 136-139
Author(s):  
Tao Bai ◽  
Shi Gen Zhu

This study prepared a Graphene/TiO2(G/TiO2) thin films by using a sol–gel method The structure and morphology of the materials were characterized using X-ray diffraction (XRD), atomic force microscope (AFM) and thermo gravimetric- differential scanning calorimeter techniques (TG/DTG).AFM images showed that the G/TiO2 film is typically amorphous hot-treated at 300°C. When the temperature was increased to 500 °C, G/TiO2 thin films are all crystalline. The XRD results showed that G/TiO2 thin films contained crystalline phase of anatase after calcining at 500°C. TG/DTG measurement showed that the change of the crystal phase did not occur in gel until to 500°C.


2019 ◽  
Vol 15 (33) ◽  
pp. 40-48
Author(s):  
Atyaf H. Kadhum

The effect of heat treatment on the optical properties of the bulk heterojunction blend nickel (II) phthalocyanine tetrasulfonic acid tetrasodium salt and Tris (8-hydroxyquinolinato) Aluminum (NiPcTs/Alq3) thin films which prepared by spin coating was described in this study. The films coated on a glass substrate with speed of 1500 rpm for 1.5 min and treated with different annealing temperature (373, 423 and 473) K. The samples characterized using UV-Vis, X ray diffraction and Fourier transform Infrared (FTIR) spectra, XRD patterns indicated the presence of amorphous and polycrystalline blend (NiPcTs/Alq3). The results of UV visible shows that the band gap increase with increasing the annealing temperature up to 373 K and decreases with increase the annealing temperature to (423, 473)K respectively.


Molekul ◽  
2008 ◽  
Vol 3 (1) ◽  
pp. 48
Author(s):  
Bilalodin Bilalodin

The growth of PbTiO3 ferroelectric thin films have successfully done. Thin films were made from bulk (powder) PbTiO3 dissolved in methanol solution. The condensation was mixed during 1 hour to get homogeneous condensation. Thin films were grown above corning substrates by spin coating method. Optimation was done by various of annealing temperature. The physical properties of thin films were characterized by Energi Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), Scanning and Electron Microscopy (SEM). EDS measurement showed that the stoichiometry composition ratio of Pb/Ti is 1/1.26 at annealing temperature 600oC and 1/1.29 at annealing temperature 700oC. The result of XRD pattern showed that crystal structure of PbTiO3 thin films are tetragonal. The calculated lattice parameters ontained from Chohen Method are a=b= 3.873 Å dan c= 4.130Å. The result of SEM PbTiO3 thin film showed that thin film has globular grain size.


2019 ◽  
Vol 52 (5) ◽  
pp. 951-959
Author(s):  
Jie-Nan Shen ◽  
Yi-Bo Zeng ◽  
Ma-Hui Xu ◽  
Lin-Hui Zhu ◽  
Bao-Lin Liu ◽  
...  

The residual stresses and piezoelectric performance of ZnO thin films under different annealing parameters have been studied by X-ray diffraction and atomic force microscopy (AFM). First, ZnO thin films with a thickness of 800 nm were grown on a Pt/Ti/SiO2/Si substrate by magnetron sputtering. Second, the orthogonal experimental method was selected to study the effects of annealing temperature, annealing time and oxygen content on the residual stresses of the ZnO thin films. The residual stresses of the ZnO thin films were measured by X-ray diffraction and the sin2ψ method. Finally, the three-dimensional topography and piezoelectric performance of the ZnO thin films were measured by AFM. The results showed that the oxygen content during the annealing process has the greatest effect on the residual stress, followed by the annealing temperature and annealing time. A minimum residual stress and optimal piezoelectric performance can be realized by annealing the ZnO thin film in pure oxygen at 723 K for 30 min.


2014 ◽  
Vol 11 (3) ◽  
pp. 1257-1260
Author(s):  
Baghdad Science Journal

In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and from 0.096 to 0. 162 eV with increasing of annealing temperature from 343K to 363K, respectively. Hall measurements showed that all the films are p-type.


Sign in / Sign up

Export Citation Format

Share Document