SYNTHESIS OF IODINE DOPED n-BMA THIN FILMS VIA PLASMA POLYMERIZATION TECHNIQUE: EFFECT ON OPTICAL PROPERTIES

2019 ◽  
Vol 27 (04) ◽  
pp. 1950133
Author(s):  
RAHIMA NASRIN ◽  
HUMAYUN KABIR ◽  
A. H. BHUIYAN

In order to understand the variation of surface morphology and optical properties due to modification, an attempt has been made to synthesize iodine-doped n-butyl methacrylate thin films through plasma polymerization technique. Field emission scanning electron microscope images displayed that the surface of the modified plasma polymerized n-butyl methacrylate (PPnBMA) thin films became smooth after iodine doping. Atomic force microscopic analysis reveals that with increasing doping time from 0[Formula: see text]min to 60[Formula: see text]min the surface root-mean-square roughness value is decreased from 0.68[Formula: see text]nm to 0.51[Formula: see text]nm, which suggests that roughness of the PPnBMA thin film surface quite improved due to iodine doping. UV-Vis absorption spectroscopic analyses exhibited that iodine doping noticeably decreased both the direct and indirect energy bandgap values of PPnBMA thin film. The effect of doping by iodine on absorption coefficient, extinction coefficient, etc. of these thin films have been also discussed.

10.14311/1767 ◽  
2013 ◽  
Vol 53 (2) ◽  
Author(s):  
Jan Píchal ◽  
Julia Klenko

Thin film technology has become pervasive in many applications in recent years, but it remains difficult to select the best deposition technique. A further consideration is that, due to ecological demands, we are forced to search for environmentally benign methods. One such method might be the application of cold plasmas, and there has already been a rapid growth in studies of cold plasma techniques. Plasma technologies operating at atmospheric pressure have been attracting increasing attention. The easiest way to obtain low temperature plasma at atmospheric pressure seems to be through atmospheric dielectric barrier discharge (ADBD). We used the plasma enhanced chemical vapour deposition (PECVD) method applying atmospheric dielectric barrier discharge (ADBD) plasmafor TiOx thin films deposition, employing titanium isopropoxide (TTIP) and oxygen as reactants, and argon as a working gas. ADBD was operated in filamentary mode. The films were deposited on glass. We studied the quality of the deposited TiOx thin film surface for various precursor gas inlet positions in the ADBD reactor. The best thin films quality was achieved when the precursor gases were brought close to the substrate surface directly through the inlet placed in one of the electrodes.High hydrophilicity of the samples was proved by contact angle tests (CA). The film morphology was tested by atomic force microscopy (AFM). The thickness of the thin films varied in the range of (80 ÷ 210) nm in dependence on the composition of the reactor atmosphere. XPS analyses indicate that composition of the films is more like the composition of TiOxCy.


2021 ◽  
Author(s):  
Vadali Venkata Satya Siva Srikanth

Diamond thin films are touted to be excellent in surface-sensitive sensing, electro-mechanical systems, and electrochemical applications. However, these applications often entail patterned active surfaces and subtle chemical surface modifications. But due to diamond’s intrinsic hardness and chemical inertness, surface patterning (using micro-machining and ion etching) and chemical surface modifications, respectively, are very difficult. In the case of surface patterning, it is even more challenging to obtain patterns during synthesis. In this chapter, the direct patterning of sub-wavelength features on diamond thin film surface using a femtosecond laser, rapid thermal annealing as a means to prepare the diamond thin film surface as an efficient direct charge transfer SERS substrate (in metal/insulator/semiconductor (MIS) configuration), and implantation of 14N+ ions into the surface and sub-surface regions for enhancing the electrical conductivity of diamond thin film to a certain depth (in MIS configuration) will be discussed encompassing the processing strategies and different post-processing characteristics.


2011 ◽  
Vol 486 ◽  
pp. 127-130
Author(s):  
Chao Cheng Chang

This study used molecular dynamics simulations with an embedded-atom method (EAM) potential to investigate the effect of surface roughness on the surface activated bonding (SAB) of aluminium thin films. The simulations started with the bonding process and followed by the tensile test for estimating bonding strength. By averaging the atomic stresses over the entire system, the stress-time curves for the bonded films under a tensile condition were predicted. Moreover, the evolution of the crystal structure in the local atomic order was examined by the common neighbour analysis. The simulated results show that the decrease in the surface roughness of thin film improves the bonding strength. The observed recrystallization processes inside the bonded thin films also reveal that the plastic deformation of the aluminium surface due to atomic attracting force compensates surface roughness.


Author(s):  
J. Temple Black

The continued development of commercial STEM systems in the next few years will have a dramatic impact on all aspects of electron microscopy, particularly as the resolution improves. The STEM system offers us the opportunity for direct computer analysis of image signals of all types, wherein signals produced by characteristic X-rays, photons, electrons will be used in a variety of mixes to produce micrographs of thin films. For example, because larger areas and thicker films can be examined in STEM systems compared to CTEM scopes, it will be commonplace to examine sections of thickness cut for OLM transmission work in the STEM. It will also become increasingly important to produce micrographs of matched internal and external structure; that is, internal structure examined by STEM signals and external structure via SEM topographical signals (secondary and backscatter emission). The examination of thin films in the SEM mode however presents some difficulties in that the depth of penetration of the primary beam is a function of the accelerating 1 voltage (roughly according to where k' and n depend on the material).


2011 ◽  
Vol 148-149 ◽  
pp. 1500-1503
Author(s):  
Wen Ning Mu ◽  
Shuang Zhi Shi

TiO2 thin films were deposited on SAM-coated silicon substrate by layer-by-layer self-assembly method. The influence of various parameters was investigated to optimize the conditions and the results show that with increasing deposition temperature and deposition time, and decreasing molar ratio of HCl to TiO22+, the content of TiO22+ in the reaction solution decreases. The as-deposited thin films were fully amorphous from the result of XRD, also were homogeneous and continuous produced at 80 °C for120 min as presented in SEM images, and the average size of particles on the thin film surface is approximately 33 nm.


2013 ◽  
Vol 802 ◽  
pp. 242-246 ◽  
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Mati Horprathum ◽  
Yossawat Rayanasukha ◽  
Darinee Phromyothin ◽  
...  

Tantalum oxide (Ta2O5) thin films, 100 nm thick were deposited by D.C. reactive magnetron sputtering system at different operated pressure on unheated p-type silicon (100) wafer and 304 stainless substrates. Their crystalline structure, film surface morphology and optical properties, as well as anticorrosive behavior, were investigated. The structure and morphology of films were characterized by grazing-incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The optical properties were determined by spectroscopic ellipsometry (SE). The corrosion performances of the films were investigated through potentiostat and immersion tests in 1 M NaCl solutions. The results showed that as-deposited Ta2O5 thin films were amorphous. The refractive index varied from 2.06 to 2.17 (at 550 nm) with increasing operated pressure. The corrosion rate of Ta2O5 thin film improves as the operated pressure decreases. The Ta2O5 thin films deposited at 3 mTorr operated pressure could be exhibited high performance anticorrosive behavior.


Author(s):  
M. A. Tit ◽  
S. N. Belyaev

This article considers the research results of the effect of stoichiometry on the properties of titanium nitride thin-film coatings of the float and electrostatic gyroscopes. It presents the results of tests of such mechanical and optical characteristics of titanium nitride thin-film structures as microhardness, resistance to wear and friction, and image contrast determined by the reflection coefficients of a titanium nitride base surface and a raster pattern formed by local laser oxidation. When making a rotor of a cryogenic gyroscope, the prospects of use and technological methods for the formation of functional surface structures of niobium carbide and nitride are considered. It is shown that during the formation of coatings of the required composition, the most important is the thermodynamic estimation of possible interactions. These interactions allow us to accomplish the structural-phase modification of the material, which is determined by the complex of possible topochemical reactions leading to the formation of compounds, including non-stoichiometric composition.


1999 ◽  
Vol 574 ◽  
Author(s):  
Norifumi Fujimura ◽  
Tamaki Shimura ◽  
Toshifumi Wakano ◽  
Atsushi Ashida ◽  
Taichiro Ito

AbstractWe propose the application of ZnO:X (X = Li, Mg, N, In, Al, Mn, Gd, Yb etc.) films for a monolithic Optical Integrated Circuit (OIC). Since ZnO exhibits excellent piezoelectric effect and has also electro-optic and nonlinear optic effects and the thin films are easily obtained, it has been studied as one of the important thin film wave guide materials especially for an acoustooptic device[1]. In terms of electro-optic and nonlinear optic effects, however, LiNbO3 or LiTaO3 is superior to ZnO. The most important issue of thin film waveguide using such ferroelectrics is optical losses at the film/substrate interface and the film surface, because the process window to control the surface morphology is very narrow due to their high deposition temperature. Since ZnO can be grown at extremely low temperature, the roughness at the surface and the interface is expected to be minimized. This is the absolute requirement especially for waveguide using a blue or ultraviolet laser. Recently, lasing at the wavelength of ultraviolet, ferroelectric and antiferromagnetic behaviors of ZnO doped with various exotic elements (exotic doping) have been reported. This paper discusses the OIC application of ZnO thin films doped with exotic elements.


Sign in / Sign up

Export Citation Format

Share Document