SYNTHESIS AND CHARACTERIZATION OF (ZNO)–(CO3O4) NANOCOMPOSITE VIA SPRAY PYROLYSIS PROCESS: THE USE OF THE BRUGGEMAN MODEL ON OPTICAL PROPERTIES PREVISION

2021 ◽  
pp. 2150066
Author(s):  
K. M. E. BOUREGUIG ◽  
H. TABET-DERRAZ ◽  
T. SEDDIK ◽  
M. A. BENALI

In the present paper, (ZnO)–(Co3O4) nanocomposite thin films have been prepared by using spray pyrolysis deposition on a glass substrate at 350∘C. After that, the as-obtained films have been characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the double beam UV-visible (UV-vis) spectrophotometer. Furthermore, the Bruggeman model is used to predict the evolution of the optical dielectric constant (real and imaginary parts: [Formula: see text] and [Formula: see text] to compare them with those obtained from the experimental results. The XRD pattern reveals that the nanocomposite film has diffraction peaks 2[Formula: see text], 36.95∘ corresponding respectively to the (220), (311) planes of cubic Co3O4 and another about of 2[Formula: see text] corresponding to the (101) plane of Wurtzite ZnO. Using the Debye Scherrer formula, the crystallite size of (ZnO)[Formula: see text]–(Co3O[Formula: see text] nanocomposite is found about 32[Formula: see text]nm, while the obtained thickness of this nanocomposite is about 780[Formula: see text]nm using the DekTak Stylus profilometer. Besides, the morphology analysis shows that the nanocomposite sample is well covered without holes and/or cracks and it has uniform dense grains. The evaluation of the transmittance, reflectance, refraction index, extinction coefficient, real and imaginary parts of dielectric constant as function of wavelength illustrates that the optical response of nanocomposite thin film (ZnO)[Formula: see text]–(Co3O[Formula: see text] depends on the influence of two mediums of pure materials ZnO and Co3O4 and their interaction. In addition, the direct band gap vs incident photon energy obtained from the Tauc plot equation shows that this nanocomposite has three values of band gap energy which are [Formula: see text][Formula: see text]eV, [Formula: see text][Formula: see text]eV (correspond to pure Co3O4 film) and [Formula: see text][Formula: see text]eV (correspond to pure ZnO film). Besides, the application of the Bruggeman equation indicates that the influence of the values of volume concentration and optical dielectric constant of the ingredient nanomaterials (ZnO and Co3O[Formula: see text] is significant on the value of the effective dielectric constant of nanocomposite thin film. The specific result of this study is the similarity between the spectra obtained from the Bruggeman model and the measured one, which proves that the application of this model is useful for the prediction of the optical properties of the composite.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3675 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
M. A. Brza ◽  
Muaffaq M. Nofal ◽  
Rebar T. Abdulwahid ◽  
Sarkawt A. Hussen ◽  
...  

Polymer electrolytes and composites have prevailed in the high performance and mobile marketplace during recent years. Polymer-based solid electrolytes possess the benefits of low flammability, excellent flexibility, good thermal stability, as well as higher safety. Several researchers have paid attention to the optical properties of polymer electrolytes and their composites. In the present review paper, first, the characteristics, fundamentals, advantages and principles of various types of polymer electrolytes were discussed. Afterward, the characteristics and performance of various polymer hosts on the basis of specific essential and newly published works were described. New developments in various approaches to investigate the optical properties of polymer electrolytes were emphasized. The last part of the review devoted to the optical band gap study using two methods: Tauc’s model and optical dielectric loss parameter. Based on recently published literature sufficient quantum mechanical backgrounds were provided to support the applicability of the optical dielectric loss parameter for the band gap study. In this review paper, it was demonstrated that both Tauc’s model and optical dielectric loss should be studied to specify the type of electron transition and estimate the optical band gap accurately. Other parameters such as absorption coefficient, refractive index and optical dielectric constant were also explored.


2018 ◽  
Vol 32 (09) ◽  
pp. 1850076 ◽  
Author(s):  
Irfan Ullah ◽  
Shaukat Ali Khattak ◽  
Tanveer Ahmad ◽  
Saman ◽  
Nayab Ali Ludhi

The titanium dioxide (TiO2) is synthesized by sol–gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.


2011 ◽  
Vol 8 (2) ◽  
pp. 561-565
Author(s):  
Baghdad Science Journal

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.


1987 ◽  
Vol 27 (6) ◽  
pp. 389-397 ◽  
Author(s):  
M. Baleva ◽  
M. Maksimov ◽  
M. Sendova

2012 ◽  
Vol 520 (14) ◽  
pp. 4532-4535 ◽  
Author(s):  
O. Fursenko ◽  
J. Bauer ◽  
G. Lupina ◽  
P. Dudek ◽  
M. Lukosius ◽  
...  

2018 ◽  
Vol 17 (03) ◽  
pp. 1760037 ◽  
Author(s):  
A. Nancy Anna Anasthasiya ◽  
K. Gowtham ◽  
R. Shruthi ◽  
R. Pandeeswari ◽  
B. G. Jeyaprakash

The spray pyrolysis technique was employed to deposit V2O5 thin films on a glass substrate. By varying the precursor solution volume from 10[Formula: see text]mL to 50[Formula: see text]mL in steps of 10[Formula: see text]mL, films of various thicknesses were prepared. Orthorhombic polycrystalline V2O5 films were inferred from the XRD pattern irrespective of precursor solution volume. The micro-Raman studies suggested that annealed V2O5 thin film has good crystallinity. The effect of precursor solution volume on morphological and optical properties were analysed and reported.


2016 ◽  
Vol 257 ◽  
pp. 123-126 ◽  
Author(s):  
Salima Labidi ◽  
Jazia Zeroual ◽  
Malika Labidi ◽  
Kalthoum Klaa ◽  
Rachid Bensalem

First-principles calculations for electronic and optical properties under pressure effect of MgO, SrO and CaO compounds in the cubic structure, using a full relativistic version of the full-potential augmented plane-wave (FP-LAPW) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA), have been reported. Furthermore, band structure calculations have been investigated by the alternative form of GGA proposed by Engel and Vosko (GGA-EV) and modified by Becke-Johnson exchange correlation potential (MBJ-GGA). All calculated equilibrium lattices, bulk modulus and band gap at zero pressure are find in good agreement with the available reported data. The pressure dependence of band gap and the static optical dielectric constant are also investigated in this work.


Sign in / Sign up

Export Citation Format

Share Document