A STUDY ON THE RELATION BETWEEN MORPHOLOGICAL AND CHEMICAL CHANGES AND WETTABILITY MODIFICATION OF POLYETHERSULFONE SURFACE AFTER IRRADIATION WITH A PULSED KrF LASER

Author(s):  
HEDIEH PAZOKIAN ◽  
MOHAMMAD REZA RASHIDIAN VAZIRI

Laser irradiation is used for surface modification of polymers aiming to improve their properties for different applications. The wettability of a polymeric surface can significantly affect its performance for biological applications. In this paper, the interaction of high-energy KrF laser photons in the two above- and below-threshold regimes with polyethersulfone polymer is studied. The role of morphological and chemical changes of the irradiated polymer and their correlation in the modification of the wetting property of this polymer is investigated. The obtained results show that the morphological parameter of surface roughness is the dominant mechanism in the below-threshold regime, while in the above-threshold region, the competition between this parameter and the carbonization amount of the surface determines the final hydrophilic response.

Author(s):  
Richard Healey

The metaphor that fundamental physics is concerned to say what the natural world is like at the deepest level may be cashed out in terms of entities, properties, or laws. The role of quantum field theories in the Standard Model of high-energy physics suggests that fundamental entities, properties, and laws are to be sought in these theories. But the contextual ontology proposed in Chapter 12 would support no unified compositional structure for the world; a quantum state assignment specifies no physical property distribution sufficient even to determine all physical facts; and quantum theory posits no fundamental laws of time evolution, whether deterministic or stochastic. Quantum theory has made a revolutionary contribution to fundamental physics because its principles have permitted tremendous unification of science through the successful application of models constructed in conformity to them: but these models do not say what the world is like at the deepest level.


2021 ◽  
Vol 22 (11) ◽  
pp. 5918
Author(s):  
Paweł Kordowitzki ◽  
Gabriela Sokołowska ◽  
Marta Wasielak-Politowska ◽  
Agnieszka Skowronska ◽  
Mariusz T. Skowronski

The oocyte is the major determinant of embryo developmental competence in all mammalian species. Although fundamental advances have been generated in the field of reproductive medicine and assisted reproductive technologies in the past three decades, researchers and clinicians are still trying to elucidate molecular factors and pathways, which could be pivotal for the oocyte’s developmental competence. The cell-to-cell and cell-to-matrix communications are crucial not only for oocytes but also for multicellular organisms in general. This latter mentioned communication is among others possibly due to the Connexin and Pannexin families of large-pore forming channels. Pannexins belong to a protein group of ATP-release channels, therefore of high importance for the oocyte due to its requirements of high energy supply. An increasing body of studies on Pannexins provided evidence that these channels not only play a role during physiological processes of an oocyte but also during pathological circumstances which could lead to the development of diseases or infertility. Connexins are proteins that form membrane channels and gap-junctions, and more precisely, these proteins enable the exchange of some ions and molecules, and therefore they do play a fundamental role in the communication between the oocyte and accompanying cells. Herein, the role of Pannexins and Connexins for the processes of oogenesis, folliculogenesis, oocyte maturation and fertilization will be discussed and, at the end of this review, Pannexin and Connexin related pathologies and their impact on the developmental competence of oocytes will be provided.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 133
Author(s):  
Ji-Hee Lee ◽  
Geonhwa Jee ◽  
Young-Sil Kwak ◽  
Heejin Hwang ◽  
Annika Seppälä ◽  
...  

Energetic particle precipitation (EPP) is known to be an important source of chemical changes in the polar middle atmosphere in winter. Recent modeling studies further suggest that chemical changes induced by EPP can also cause dynamic changes in the middle atmosphere. In this study, we investigated the atmospheric responses to the precipitation of medium-to-high energy electrons (MEEs) over the period 2005–2013 using the Specific Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). Our results show that the MEE precipitation significantly increases the amounts of NOx and HOx, resulting in mesospheric and stratospheric ozone losses by up to 60% and 25% respectively during polar winter. The MEE-induced ozone loss generally increases the temperature in the lower mesosphere but decreases the temperature in the upper mesosphere with large year-to-year variability, not only by radiative effects but also by adiabatic effects. The adiabatic effects by meridional circulation changes may be dominant for the mesospheric temperature changes. In particular, the meridional circulation changes occasionally act in opposite ways to vary the temperature in terms of height variations, especially at around the solar minimum period with low geomagnetic activity, which cancels out the temperature changes to make the average small in the polar mesosphere for the 9-year period.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 977.1-977
Author(s):  
A. Potapova ◽  
O. Egorova ◽  
O. Alekseeva ◽  
A. Volkov ◽  
S. Radenska-Lopovok

Background:Ultrasound (US) is a non-invasive and safe imaging method that allows in vivo differentiation of the morphological structures of subcutaneous fat (SCF) tissue in in normal and pathology.Objectives:Reveal features of ultrasound changes in SCF in panniculitis (Pn).Methods:57 patients (f – 45, m - 12) aged 18 - 67 years with an initial diagnosis of erythema nodosum and a disease duration of 3.6 ± 1.4 years were examined. In addition to the general clinical examination, a computed tomography of the chest organs and a pathomorphological examination of a skin biopsy from the site of the node were performed. Ultrasound was performed on a MyLabTwice apparatus (ESAOTE, Italy) using a multi-frequency linear transducer (10-18 MHz) with the PD technique, the parameters of which were adapted for recording low-speed flows (PRF 300-600 Hz, low filter, dynamic range - 20-40 dB), the presence of vascularization was assessed not only in the affected area, but also on the contralateral side using high-energy Doppler.Results:33 patients were diagnosed with septal Pn (SPn), 24 - lobular Pn (LPn). In all cases, the diagnosis was verified by histological examination. Ultrasound made it possible to assess the thickness, echoicity and vascularization of the SCF. In 35 patients, significant thickening of the SCF was revealed (as compared to the contralateral side), of which in 14 cases with SPn, in 21 - with LPn. Significant diffuse thickening of the SCF with the contralateral side was observed in 18 patients, incl. in 12 (66%) patients with LPn. Limited thickening was more typical for SPn (73%). A significant increase in the echoicity of the SCF was noted in all forms of Pn. A “lobular” echo pattern with an anechogenic environment was observed in 25 patients, of which 18 (72%) had LPn. An increase in vascularization compared to the contralateral side was recorded in 30 cases (SPn-17, LPn-13).Conclusion:The obtained preliminary results indicate the important role of ultrasound in assessing the depth and prevalence of the inflammatory process at Pn. To clarify the diagnostic value of this method, further studies are needed on a larger sample of patients.Disclosure of Interests:None declared


1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


Solar Physics ◽  
1996 ◽  
Vol 167 (1-2) ◽  
pp. 307-320 ◽  
Author(s):  
E. Rieger ◽  
D. F. Neidig ◽  
D. W. Engfer ◽  
D. Strelow
Keyword(s):  

1976 ◽  
Vol 13 (7) ◽  
pp. 2013-2027 ◽  
Author(s):  
Richard C. Arnold ◽  
Gerald H. Thomas

2009 ◽  
Vol 159-160 ◽  
pp. 168-172
Author(s):  
I. Mica ◽  
L. Di Piazza ◽  
L. Laurin ◽  
M. Mariani ◽  
A.G. Mauri ◽  
...  

Clay Minerals ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 39-57 ◽  
Author(s):  
L. J. Michot ◽  
F. Villiéras

AbstractHigh-resolution gas adsorption techniques were used to analyse the evolution of the aspect ratio and adsorption energy distribution on synthetic saponite samples with increasing layer charge. Using Ar as a gaseous probe, the aspect ratio of the saponite particles can be determined easily by decomposing the derivative adsorption isotherms and taking into account high-energy sites which can be assigned to talc-like ditrigonal cavities. Changes in the shape of the elementary particles are observed for layer charges above 1.30, i.e. when all the ditrigonal cavities contain at least one Al atom substituting for Si. When N2 is used as a probe, high-energy sites that could be wrongly interpreted as micropores on the basis of classical t-plot treatments are observed whatever the layer charge. Using the information obtained from both Ar and N2, schemes for describing adsorption can be proposed for all layer charges and suggest complex adsorption mechanisms for charged clay minerals.


Sign in / Sign up

Export Citation Format

Share Document