CEMAP: COST-EFFECTIVE MOBILE AGENT PLANNING

2004 ◽  
Vol 13 (02) ◽  
pp. 159-181 ◽  
Author(s):  
JIN-WOOK BAEK ◽  
JAE-HEUNG YEO ◽  
GYU-TAE KIM ◽  
HEON-YOUNG YEOM

Two significant performance factors in Mobile Agent Planning (MAP) for distributed information retrieval are the number of mobile agents and the total execution time. Using fewer mobile agents results in less network traffic and consumes less bandwidth. Regardless of the number of agents used, the total execution time for a task must be kept to a minimum. A retrieval service must minimize both these factors for better system performance, and at the same time, it must be able to supply the required information to users as quickly as possible. In this paper, we propose heuristic algorithms, called Cost-Effective MAP (CEMAP), to minimize both the number of mobile agents and the total execution time under the condition that the turnaround time is kept to a minimum. Although these algorithms tend to slightly increase the planning cost, a simulation study shows that these algorithms enhance the system performance significantly. By adopting these algorithms, systems can maintain lower network traffic while satisfying the minimum turnaround time.

2021 ◽  
Vol 10 (2) ◽  
pp. 28
Author(s):  
Saeid Pourroostaei Ardakani

Mobile agents have the potential to offer benefits, as they are able to either independently or cooperatively move throughout networks and collect/aggregate sensory data samples. They are programmed to autonomously move and visit sensory data stations through optimal paths, which are established according to the application requirements. However, mobile agent routing protocols still suffer heavy computation/communication overheads, lack of route planning accuracy and long-delay mobile agent migrations. For this, mobile agent route planning protocols aim to find the best-fitted paths for completing missions (e.g., data collection) with minimised delay, maximised performance and minimised transmitted traffic. This article proposes a mobile agent route planning protocol for sensory data collection called MINDS. The key goal of this MINDS is to reduce network traffic, maximise data robustness and minimise delay at the same time. This protocol utilises the Hamming distance technique to partition a sensor network into a number of data-centric clusters. In turn, a named data networking approach is used to form the cluster-heads as a data-centric, tree-based communication infrastructure. The mobile agents utilise a modified version of the Depth-First Search algorithm to move through the tree infrastructure according to a hop-count-aware fashion. As the simulation results show, MINDS reduces path length, reduces network traffic and increases data robustness as compared with two conventional benchmarks (ZMA and TBID) in dense and large wireless sensor networks.


2015 ◽  
Vol 2015 ◽  
pp. 1-15
Author(s):  
Chien-Sheng Chen ◽  
Jiing-Dong Hwang ◽  
Chyuan-Der Lu ◽  
Ting-Yuan Yeh

Many mobile agent system-related services and applications require interacting with a mobile agent by passing messages. However, an agent’s mobility raises several challenges in delivering messages to a mobile agent accurately. Consisting of tracking and message delivery phases, most mobile agent location management schemes create or receive many update messages and interaction messages to ensure the effectiveness of the schemes. In addition to downgrading the overall performance of a mobile agent location management scheme, excessive transmission of messages increases the network load. The migration locality of a mobile agent and the interaction rate between mobile agents significantly affect the performance of a mobile agent location management scheme with respect to location management cost. This work presents a novel Dual Home based Scheme (DHS) that can lower the location management costs in terms of migration locality and interaction rate. While the DHS scheme uniquely adopts dual home location management architecture, a selective update strategy based on that architecture is also designed for cost-effective location management of mobile agents. Moreover, DHS is compared with available schemes based on formulations and simulation experiments from the perspective of location management costs. Simulation results demonstrate that the proposed DHS scheme performs satisfactorily in terms of migration locality and interaction rate.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


2017 ◽  
Vol 2 (1) ◽  
pp. 27-32
Author(s):  
Botchkaryov. A. ◽  

The way of functional coordination of methods of organization adaptive data collection processes and methods of spatial self-organization of mobile agents by parallel execution of the corresponding data collection processes and the process of motion control of a mobile agent using the proposed protocol of their interaction and the algorithm of parallel execution planning is proposed. The method allows to speed up the calculations in the decision block of the mobile agent by an average of 40.6%. Key words: functional coordination, adaptive data collection process, spatial self-organization, mobile agents


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1446
Author(s):  
Heather H. Tso ◽  
Leonardo Galindo-González ◽  
Stephen E. Strelkov

Clubroot, caused by Plasmodiophora brassicae, is one of the most detrimental threats to crucifers worldwide and has emerged as an important disease of canola (Brassica napus) in Canada. At present, pathotypes are distinguished phenotypically by their virulence patterns on host differential sets, including the systems of Williams, Somé et al., the European Clubroot Differential set, and most recently the Canadian Clubroot Differential set and the Sinitic Clubroot Differential set. Although these are frequently used because of their simplicity of application, they are time-consuming, labor-intensive, and can lack sensitivity. Early, preventative pathotype detection is imperative to maximize productivity and promote sustainable crop production. The decreased turnaround time and increased sensitivity and specificity of genotypic pathotyping will be valuable for the development of integrated clubroot management plans, and interest in molecular techniques to complement phenotypic methods is increasing. This review provides a synopsis of current and future molecular pathotyping platforms for P. brassicae and aims to provide information on techniques that may be most suitable for the development of rapid, reliable, and cost-effective pathotyping assays.


1988 ◽  
Vol 11 (1) ◽  
pp. 1-19
Author(s):  
Andrzej Rowicki

The purpose of the paper is to consider an algorithm for preemptive scheduling for two-processor systems with identical processors. Computations submitted to the systems are composed of dependent tasks with arbitrary execution times and contain no loops and have only one output. We assume that preemptions times are completely unconstrained, and preemptions consume no time. Moreover, the algorithm determines the total execution time of the computation. It has been proved that this algorithm is optimal, that is, the total execution time of the computation (schedule length) is minimized.


2014 ◽  
Vol 543-547 ◽  
pp. 4198-4201
Author(s):  
Xiao Guang Li ◽  
Zhan Jun Gao

Mobile agent is one of the most prominent technologies believed to be playing an important role in future e-commerce. After presented an intelligent e-commerce model based on OBI ( open buying on the internet) , we developed a modified approach for the security of mobile agents and e-commerce, and designed an intelligent shopping algorithm based on variable time negotiation function. The presented model has been evaluated by simulation experiment. It has been found that the presented model is efficient.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668484 ◽  
Author(s):  
Huthiafa Q Qadori ◽  
Zuriati A Zulkarnain ◽  
Zurina Mohd Hanapi ◽  
Shamala Subramaniam

Recently, wireless sensor networks have employed the concept of mobile agent to reduce energy consumption and obtain effective data gathering. Typically, in data gathering based on mobile agent, it is an important and essential step to find out the optimal itinerary planning for the mobile agent. However, single-agent itinerary planning suffers from two primary disadvantages: task delay and large size of mobile agent as the scale of the network is expanded. Thus, using multi-agent itinerary planning overcomes the drawbacks of single-agent itinerary planning. Despite the advantages of multi-agent itinerary planning, finding the optimal number of distributed mobile agents, source nodes grouping, and optimal itinerary of each mobile agent for simultaneous data gathering are still regarded as critical issues in wireless sensor network. Therefore, in this article, the existing algorithms that have been identified in the literature to address the above issues are reviewed. The review shows that most of the algorithms used one parameter to find the optimal number of mobile agents in multi-agent itinerary planning without utilizing other parameters. More importantly, the review showed that theses algorithms did not take into account the security of the data gathered by the mobile agent. Accordingly, we indicated the limitations of each proposed algorithm and new directions are provided for future research.


2014 ◽  
Vol 519-520 ◽  
pp. 1239-1242
Author(s):  
Xiao Hu Yu

An improved congestion control mechanism based on mobile agent for wireless sensor networks is proposed, which includes node-level congestion and link-level congestion control. The formers congestion information is collected and distributed by mobile agents (MA). When mobile agent travels through the networks, it can select a less-loaded neighbor node as its next hop and update the routing table according to the nodes congestion status. Minimum package of node outgoing traffic was preferentially transmitted in the link-level congestion. Simulation result shows that proposed mechanism attains high delivery ratio and throughput with reduced delay when compared with the existing technique.


Sign in / Sign up

Export Citation Format

Share Document