HIGH-POWER OPTICAL SOURCE USING DYE-DOPED POLYMER OPTICAL FIBER

1996 ◽  
Vol 05 (01) ◽  
pp. 73-88 ◽  
Author(s):  
T. YAMAMOTO ◽  
K. FUJII ◽  
A. TAGAYA ◽  
E. NIHEI ◽  
Y. KOIKE ◽  
...  

Basic characteristics of organic-dye doped polymer optical fibers (DPOFs) are demonstrated. The devices contain laser dye, such as Rhodamine 6G (R6G) and Rhodamine B (RB) in the core region. Firstly, amplification characteristics of DPOF amplifiers (PO-FAs) excited by a pulse-operated, doubled Nd:YAG laser are demonstrated, e.g., a 250 mm-length of RB-POFA gives 1 kW (30 dB) of amplified signal at 591 nm. Next, an all solid state system of RB DPOF laser (POFL) is discussed by numerical simulation and the experimental result of high-power amplified spontaneous emission (ASE) by strong excitation of DPOF is shown.

The Analyst ◽  
2020 ◽  
Vol 145 (15) ◽  
pp. 5307-5313
Author(s):  
Huan Lin ◽  
Xin Cheng ◽  
Ming-Jie Yin ◽  
Zhouzhou Bao ◽  
Xunbin Wei ◽  
...  

A flexible porphyrin doped polymer optical fiber was developed for fast and highly sensitive monitoring of DNT vapors.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3011 ◽  
Author(s):  
Claire Guignier ◽  
Brigitte Camillieri ◽  
Michel Schmid ◽  
René M. Rossi ◽  
Marie-Ange Bueno

The objective of this paper is to study the ability of polymer optical fiber (POF) to be inserted in a knitted fabric and to measure both pressure and friction when walking. Firstly, POF, marketed and in development, have been compared in terms of the required mechanical properties for the insertion of the fiber directly into a knitted fabric on an industrial scale, i.e. elongation, bending rigidity, and minimum bending radius before plastic deformation. Secondly, the chosen optical fiber was inserted inside several types of knitted fabric and was shown to be sensitive to friction and compression. The knitted structure with the highest sensitivity has been chosen for sock prototype manufacturing. Finally, a feasibility study with an instrumented sock showed that it is possible to detect the different phases of walking in terms of compression and friction.


1997 ◽  
Vol 36 (Part 1, No. 5A) ◽  
pp. 2705-2708 ◽  
Author(s):  
Akihiro Tagaya ◽  
Takeyuki Kobayashi ◽  
Shiro Nakatsuka ◽  
Eisuke Nihei ◽  
Keisuke Sasaki ◽  
...  

1992 ◽  
Vol 247 ◽  
Author(s):  
Yasuhiro Koike

ABSTRACTHigh-bandwidth graded-index (GI) polymer optical fiber (POF) and single-mode POF with good mechanical properties were successfully obtained by our interfacial-gel polymerization technique. The bandwidth of the GI POF is about 1 GHz · km which is two hundred times larger than that of the conventional step-index (SI) POF. The minimum attenuation of transmission is 56 dB/km at 688-nm wavelength and 94 dB/km at 780-nm wavelength. The single-mode POF in which the core diameter was 3–15 μ m and the attenuation of transmission was 200 dB/km at 652-nm wavelength was successfully obtained for the first time.


2014 ◽  
Author(s):  
Sreechandralijith K C ◽  
Jaison Peter ◽  
Aparna Thankappan ◽  
V. P. N. Nampoori ◽  
P. Radhakrishnan

2010 ◽  
Vol 2 (3) ◽  
pp. 521-531 ◽  
Author(s):  
J Arrue ◽  
F Jiménez ◽  
M A Illarramendi ◽  
J Zubia ◽  
I Ayesta ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1187 ◽  
Author(s):  
Itxaso Parola ◽  
M. Asuncion Illarramendi ◽  
Florian Jakobs ◽  
Jana Kielhorn ◽  
Daniel Zaremba ◽  
...  

This work reports on a diameter dependence analysis of the performance as luminescent solar concentrators of three self-fabricated polymer optical fibers (POFs) doped with a hybrid combination of dopants. The works carried out include the design and self-fabrication of the different diameter fibers; an experimental analysis of the output power, of the output irradiance and of the fluorescent fiber solar concentrator efficiency; a comparison of the experimental results with a theoretical model; a study of the performance of all the fibers under different simulated lighting conditions; and a calculation of the active fiber length of each of the samples, all of them as a function of the fiber core diameter. To the best of our knowledge, this paper reports the first analysis of the influence of the POF diameter for luminescent solar concentration applications. The results obtained offer a general perspective on the optimal design of solar energy concentrating systems based on doped POFs and pave the way for the implementation of cost-effective solar energy concentrating devices.


Sign in / Sign up

Export Citation Format

Share Document