INVESTIGATION INTO CHANGES IN COLLAGEN STRUCTURE OF ARTICULAR CARTILAGE AND WEAR PARTICLES OF KNEE JOINTS FOR OSTEOARTHRITIC WEAR ASSESSMENT

2009 ◽  
Vol 12 (03) ◽  
pp. 143-152 ◽  
Author(s):  
Zhongxiao Peng ◽  
Mark Fasiolo ◽  
Kane Hart

Our bodies deteriorate from wear and tear processes, which give rise to ache and pain. This degenerative process is medically referred to as osteoarthritis (OA) and it is estimated to affect a large portion of the population at some stage in their life. There is a need for research into new and improved techniques that might be developed into a schema to aid in the early diagnosis and prognosis of a patient's condition. This can be achieved by studying the morphology of the collagen fibers in the wear particles generated to gain an insight into the osteoarthritic condition exhibited by the joint. The study has been conducted in three phases. Firstly, an animal model has been used to generate samples of cartilage and wear particles for the study. A suitable staining technique has then been developed that allows the three-dimensional visualization and quantitative analysis of the structure of the collagen matrix of sheep cartilage and in wear particles. Finally, correlation of the changes in the collagen matrix as per OA severity has been studied. The study has identified key numerical parameters to characterize distinctive wear features of the cartilage and wear debris. A good correlation of the wear features of the cartilage and wear particle samples has been found. The positive results attained by this study suggest that with the aid of further research and development, it is distinctly possible to develop improved diagnostic procedures for clinical osteoarthritic assessment.

1999 ◽  
Vol 121 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Z. Peng ◽  
T. B. Kirk

Although the morphology of wear debris generated in a machine has a direct relationship to wear processes and machine condition, studying wear particles for machine condition monitoring has not been widely applied in Industry as it is time consuming and requires certain expertise of analysts. To overcome these obstacles, automatic wear particle analysis and identification systems need to be developed. In this paper, laser scanning confocal microscopy has been used to obtain three-dimensional images of metallic wear particles. An analysis system has been developed and applied to study the boundary morphology and surface topography of the wear debris. After conducting the image analysis procedure and selecting critical criteria from dozens of available parameters, neural networks and grey systems have been investigated to classify unknown patterns using the numerical descriptors. It is demonstrated that the combination of the image analysis system and automatic classification systems has provided an automatic package for wear particle study which may be applied to industrial applications in the future.


2010 ◽  
Vol 654-656 ◽  
pp. 2253-2256
Author(s):  
Christopher Allen ◽  
Zhong Xiao Peng ◽  
Ling Yin ◽  
Emma Carmichael

This work aimed to establish a suitable procedure for establishing wear particle hardness and to investigate if the hardness of articular cartilage wear particles increases with increasing grades of osteoarthritis. To achieve the goals a selection of fresh sheep knee joints were obtained and consequently worn in a specially designed wear simulator. Wear particles were then removed from the joint using a syringe and prepared for hardness testing. In order to test the hardness of the wear particle samples nanoindentation was used. Once completed statistical analyses and correlation analyses were performed in order to find any relationships present. This was the first time that the hardness of the wear particles was tested and studied. As a result of the tests performed a general relationship between wear particle hardness and osteoarthritis grade was able to be determined. It was also determined that further work needed to be conducted on the experimental procedure to increase the accuracy of the results obtained.


2013 ◽  
Vol 330 ◽  
pp. 338-345
Author(s):  
Chun Hui Wang ◽  
Wei Yuan ◽  
Guang Neng Dong ◽  
Jun Hong Mao

On-line visual ferrograph (OLVF) is an efficient and real-time condition monitoring device. From the point of flow conservation, on the basis of the particle coverage area data collected by OLVF, this paper deduced two models about wear loss of the tribo-pairs in the wear process, one is general mathematical (GM) model including distribution impact factor of wear particle, and other simplified GM (SGM) model which does not contain the factor. The key factor affecting the accuracy of the two models is the three dimensional information of wear particles referring to particle area and thickness. This model using the disc and the ball whose materials were GCr15 were experimentally demonstrated on a pin-on-disc testing machine. And the OLVF was used to acquire the coverage area of the wear particles, which can reflect the wear loss. It shows that, in some cases, the approximate wear loss in the process was obtained on-line conveniently. Compared with experiment values derived from other wear measurement methods like weighing mass method and surface profilometry method, the SGM model can reflect tendency of wear loss about the tribo-pairs continuously. The deviations about wear loss by the model were discussed. Meanwhile, compared with the traditional means to compute the wear loss, this SGM model could be employed both for off-line analysis and on-line condition monitoring programs.


Author(s):  
Nicolas Boisset ◽  
Jean-Christophe Taveau ◽  
Jean Lamy ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
...  

Hemocyanin, the respiratory pigment of the scorpion Androctonus australis is composed of 24 kidney shaped subunits. A model of architecture supported by many indirect arguments has been deduced from electron microscopy (EM) and immuno-EM. To ascertain, the disposition of the subunits within the oligomer, the 24mer was submitted to three-dimensional reconstruction by the method of single-exposure random-conical tilt series.A sample of native hemocyanin, prepared with the double layer negative staining technique, was observed by transmisson electron microscopy under low-dose conditions. Six 3D-reconstructions were carried out indenpendently from top, side and 45°views. The results are composed of solid-body surface representations, and slices extracted from the reconstruction volume.The main two characters of the molecule previously reported by Van Heel and Frank, were constantly found in the solid-body surface representations. These features are the presence of two different faces called flip and flop and a rocking of the molecule around an axis passing through diagonnally opposed hexamers. Furthermore, in the solid-body surface of the top view reconstruction, the positions and orientations of the bridges connecting the half molecules were found in excellent agreement with those predicted by the model.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Hussain, S. ◽  
M.K Abdul Hamid ◽  
A.R Mat Lazim ◽  
A.R. Abu Bakar

Brake wear particles resulting from friction between the brake pad and disc are common in brake system. In this work brake wear particles were analyzed based on the size and shape to investigate the effects of speed and load applied to the generation of brake wear particles. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) was used to identify the size, shape and element compositions of these particles. Two types of brake pads were studied which are non-asbestos organic and semi metallic brake pads. Results showed that the size and shape of the particles generatedvary significantly depending on the applied brake load, and less significantly on brake disc speed. The wear particle becomes bigger with increasing applied brake pressure. The wear particle size varies from 300 nm to 600 µm, and contained elements such as carbon, oxygen, magnesium, aluminum, sulfur and iron.


2014 ◽  
Vol 11 (93) ◽  
pp. 20130962 ◽  
Author(s):  
S. B. Goodman ◽  
E. Gibon ◽  
J. Pajarinen ◽  
T.-H. Lin ◽  
M. Keeney ◽  
...  

Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants.


2021 ◽  
Author(s):  
Christine Poon

AbstractArthroplasty implants e.g. hip, knee, spinal disc sustain relatively high compressive loading and friction wear, which lead to the formation of wear particles or debris between articulating surfaces. Despite advances in orthopaedic materials and surface treatments, the production of wear debris from any part of a joint arthroplasty implant is currently unavoidable. Implant wear debris induces host immune responses and inflammation, which causes patient pain and ultimately implant failure through progressive inflammation-mediated osteolysis and implant loosening, where the severity and rate of periprosthetic osteolysis depends on the material and physicochemical characteristics of the wear particles. Evaluating the cytotoxicity of implant wear particles is important for regulatory approved clinical application of arthroplasty implants, as is the study of cell-particle response pathways. However, the wear particles of polymeric materials commonly used for arthroplasty implants tend to float when placed in culture media, which limits their contact with cell cultures. This study reports a simple means of suspending wear particles in liquid medium using sodium carboxymethyl cellulose (NaCMC) to provide a more realistic proxy of the interaction between cells and tissues to wear particles in vivo, which are free-floating in synovial fluid within the joint cavity. Low concentrations of NaCMC dissolved in culture medium were found to be effective for suspending polymeric wear particles. Such suspensions may be used as more physiologically-relevant means for testing cellular responses to implant wear debris, as well as studying the combinative effects of shear and wear particle abrasion on cells in a dynamic culture environments such as perfused tissue-on-chip devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinwei Yang ◽  
Xianfeng Zou ◽  
Shuai Zhang ◽  
Hongyue Chen ◽  
Yajing Wei ◽  
...  

AbstractAiming at the problem of severe vibration and abnormal wear and tear of various components in coal shearer under slant-cutting conditions, a non-linear dynamics model with 13 degrees of freedom for a coal shearer under slant-cutting conditions is developed using vibration mechanics and multi-body dynamics theory, and the characteristics of the slide shoes-middle groove contact, the ranging arm-haulage unit connection with gaps and the guidance sliding boots-pin rail multi-surface contact with gaps are described based on three-dimensional fractal theory and Hertz contact theory. Based on Huco's law, the ranging arm and the hydraulic rod are assumed to be flexible beams, the rigidity characteristics of the ranging arm itself, the connection characteristics of the haulage unit and the fuselage are described, a drum correction load with a traction speed correction factor is proposed as the external excitation of the system, and the model is solved and analyzed. The research results show that the change of traction speed has a greater influence on the vibration swing angle and displacement of the front drum, front ranging arm and front walking unit, and the vibration swing angle and displacement of the three increase with the increase of traction speed, while the change of coalface hardness coefficient has less influence on the vibration displacement of the key components of the coal shearer. Under the working parameters of v = 3 m/min and f = 3, the swing angle and displacement of the front ranging arm and front drum fluctuate in the ranges of − 0.4–0.1 rad and – 15–15 mm respectively; the vibration acceleration is – 300–300 rad/s2 and – 200–200 mm/s2 respectively, the main vibration frequencies are 16.63 Hz and 12.14 Hz respectively, and finally the results are verified by experimental methods.


Author(s):  
Anh Cong ◽  
Rafaela M. L. Pimenta ◽  
Jon Holy ◽  
Ahmed A Heikal

The majority of in vitro studies of living cells are routinely conducted in a two-dimensional (2D) monolayer culture. Recent studies, however, suggest that 2D cell culture promotes specific types of...


Sign in / Sign up

Export Citation Format

Share Document