MICROHARDNESS EVALUATION OF NON ENZYMATICALLY GLYCATED BOVINE FEMUR CORTICAL BONE

2015 ◽  
Vol 18 (01) ◽  
pp. 1550004 ◽  
Author(s):  
Gulin Findikoglu ◽  
Z. Evis

Purpose: The aim of this study is to investigate deterioration in mechanical integrity of the collagen network of bovine bone formed by non-enzymatic glycation (NEG), a process that mimics aging by microindentation technique. Methods: Young and old bovine cortical bone specimens were rested in solutions for four weeks for the process of NEG and were grouped as ribosylated and non-ribosylated. A series of indentations were made on bone specimens weekly for each of 3-masses of 50 g, 100 g and 200 g for 10 s to detect the effect of indentation load and for each of five durations of 5 s, 10 s, 20 s, 30 s for 100 g to study the effect of indentation duration. The applied load was increased to 300 g, 500 g, 1000 g and 2000 g for 10 s to be able to make microcracks. Specimens were tested in the wet and dry state to study the effects of hydration on microhardness measurement. Results: Loads of 50 g, 100 g and 200 g for 10 s were able to differ ribosylated bone from non-ribosylated bone for the young and old bovine bones. Microhardness values increased with increasing incubation period. Microhardness of dry specimens were found to be statistically higher than that of wet specimens. Presence of extrinsic toughening mechanisms including crack bridging due to uncracked ligaments and collagen fibers were directly observed by scanning electron microscope (SEM). Ribosylated bone was found to have lower number of collagen bridging compared to non-ribosylated bovine bone. Conclusion: Microhardness test by these are able to discriminate non-modified collagen structure from modified collagen. On the other hand, it is found that microindentation was not able to discriminate the degree of NEG.

2004 ◽  
Vol 36 (1) ◽  
pp. 27-41 ◽  
Author(s):  
A.V. Byakova ◽  
Yu.V. Milman ◽  
A.A. Vlasov

Specific features of the test method procedure capable for determining the plasticity characteristic dH by indentation of inhomogeneous coatings affected by residual stress was clarified. When the value of the plasticity characteristic for coating was found to be as great as dH > 0.5 a simplified model was found to be reasonably adequate, while a modified model assumed compressibility of the deformation core beneath indentation. The advantage of the modified approach compared to the simplified one was grounded experimentally only if the elastic deformation for coating becomes greater than ?e ? 3.5%, resulting in the decrease of plasticity characteristic dH < 0.5. To overcome non accuracy caused by the effect of the scale factor on measurement results a comparison of different coatings was suggested using stabilized values of the plasticity characteristic dH determined under loads higher than critical, P ? Pc, ensuring week dependence of micro hardness values on the indentation load.


2020 ◽  
Vol 115 (11) ◽  
pp. 399-408
Author(s):  
Catherine Maidment ◽  
Meekyung Ahn ◽  
Rafea Naffa ◽  
Trevor Loo ◽  
Gillian Norris

Looseness is a defect found in leather that reduces its quality by causing a wrinkly appearance in the finished product, resulting in a reduction in its value. Earlier studies on loose leather using microscopy and Raman spectroscopy reported a change in the collagen structure of loose leather. In this study, proteomics was used to investigate the possible molecular causes of looseness in the raw material, the first time such a study has been carried out. Proteins extracted from two regions of raw hide using two different methods were analysed; those taken from the distal axilla, an area prone to looseness, and those taken from the backbone which is less prone to looseness. Analyses using 1DE-LC-MS/MS showed that although the overall collagen concentration was similar in both areas of the hide, the distribution of the different types of collagen differed.  Specifically, concentrations of type I collagen, and the collagen-associated proteoglycan decorin were lower in samples taken from the distal axilla, symptomatic of a collagen network with excess space seen for these samples using confocal microscopy. This study suggests a possible link between the molecular components of raw cattle hide and looseness and more importantly between the molecular components of skin and skin defects. There is therefore potential to develop biomarkers for looseness which will enable early preventative action.


Author(s):  
Aniek Setiya Budiatin ◽  
Samirah ◽  
Maria Apriliani Gani ◽  
Wenny Putri Nilamsari ◽  
Chrismawan Ardianto ◽  
...  

Bovine bone is a considerable source for the production of hydroxyapatite. The recent study reported a novel method to extract hydroxyapatite from bovine bone without producing hazardous residue. The bovine bones were cut and boiled in the opened chamber followed by boiling in pressurized tank. The bones were then soaked into 95% ethanol. Calcination was then conducted in 800°C, 900°C and 1,000°C, for 2 hours. The result was then grinded and sieved. The powder then was characterized using Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) to measure the purity of hydroxyapatite. It is concluded that the hydroxyapatite derived from this process showed 100% purity, resulting 35.34 ± 0.39% w/w from the wet bone weight and 72.3% w/w from the dried weight. The present extraction method has been proven to yield high amount of pure hydroxyapatite as well as reducing the use of hazardous reagent.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Javaherian Naghash Hamid ◽  
Dehghan Fariba ◽  
Massah Ahmad Reza

AbstractNovel microprous beads with the particle size of about 0.6-1.1 mm were prepared for the first time, from methylmethacrylate (MMA), ethyleneglycol dimethacrylate (EGDM), triethoxyvinylsilane (TEVS) and triphenylvinylsilane (TPVS) by suspension polymerization technique. In this study toluene was used as solvent. The swelling measurement results indicate that increasing silicone concentration increases the amount of pores and porosity percent, the weight swelling ratio, and particle sizes, but it has been observed that the apparent density decreases in the case of TEVS, and not in the case of TPVS. Also it has been demonstrated that the volume swelling ratio is independent of TEVS and increases by increasing TPVS concentration. The resulting copolymer beads were characterized by using swelling studies and Fourier transform infrared spectroscopy (FTIR). The morphology of copolymer beads were also investigated by scanning electron microscopy (SEM) and optical microscopy (OM).


1999 ◽  
Vol 121 (6) ◽  
pp. 616-621 ◽  
Author(s):  
M. T. Fondrk ◽  
E. H. Bahniuk ◽  
D. T. Davy

An experimental study examined the tensile stress-strain behavior of cortical bone during rapid load cycles to high strain amplitudes. Machined bovine and human cortical bone samples were subjected to loading cycles at a nominal load/unload rate of ±420 MPa/s. Loads were reversed at pre-selected strain levels such that load cycles were typically completed in 0.5-0.7 seconds. Axial strain behavior demonstrated considerable nonlinearity in the first load cycle, while transverse strain behavior was essentially linear. For the human bone 29.1 percent (S.D. = 4.7 percent), and for the bovine bone 35.1 percent (S.D. = 10.8 percent) of the maximum nonlinear strain accumulated after load reversal, where nonlinear strain was defined as the difference between total strain and strain corresponding to linear elastic behavior. Average residual axial strain on unloading was 35.4 percent (S.D. = 1.2 percent) for human bone and 35.1 percent (S.D. = 2.9 percent) of maximum nonlinear strain. Corresponding significant volumetric strains and residual volumetric strains were found. The results support the conclusions that the nonlinear stress-strain behavior observed during creep loading also occurs during transient loading at physiological rates. The volume increases suggest that damage accumulation, i.e., new internal surfaces and voids, plays a major role in this behavior. The residual volume increases and associated disruptions in the internal structure of bone provide a potential stimulus for a biological repair response.


2008 ◽  
Vol 396-398 ◽  
pp. 407-410 ◽  
Author(s):  
Oguzhan Gunduz ◽  
L.S. Ozyegin ◽  
Sergey V. Dorozhkin ◽  
Onur Meydanoglu ◽  
Niyazi Eruslu ◽  
...  

Composites of calcinated bovine bone derived hydroxyapatite (HA) with 5 and 10 wt % SrCO3 were prepared by sintering. The production of HA from natural sources is preferred due to money and time saving reasons. In this study scanning electron microscopy (SEM) investigations and together with measurements of microhardness, density, and compression strength were performed. The experimental results indicated that compression strength and microhardness values of HA-Sr-oxide composites decrease when the content of SrCO3 and sintering temperature increase. The best compression strength values were achieved after sintering at 1000°C. It was seen that at higher temperatures the compression strength and the microhardness values decrease due to the pore formation. The pore formation is very important for scaffold formation for tissue engineering purposes.


2011 ◽  
Vol 82 (1) ◽  
pp. 62-66 ◽  
Author(s):  
Mariana Marquezan ◽  
Thiago Chon Leon Lau ◽  
Claudia Trindade Mattos ◽  
Amanda Carneiro da Cunha ◽  
Lincoln Issamu Nojima ◽  
...  

Abstract Objective: To verify whether bone mineral density (BMD) of cortical bone, trabecular bone, and total bone influence the primary stability of orthodontic miniscrews and to verify whether there is a correlation between the measurement of BMD by cone-beam computed tomography (CBCT) and central dual-energy x-ray absorptiometry (DEXA). Materials and Methods: Twenty bovine bone sections were extracted from the pubic and iliac bones from regions with cortical thicknesses of approximately 1 mm. The BMD of the total bone block was evaluated using two methods: CBCT and DEXA. The BMD of cortical, trabecular, and total bone in the region of interest (ROI) were also evaluated by CBCT. After scanning the bone blocks, 20 self-drilling miniscrews (INP®) 1.4 mm in diameter and 6 mm long were inserted into them. The peak implant insertion torque (IT) was registered. After this, the pull-out test (PS) was performed and the maximum force registered. The Pearson correlation test was applied to verify the correlations between variables. Results: The BMD of the total bone block verified by CBCT and DEXA showed a positive and strong correlation (r  =  0.866, P  =  .000). The BMD of the ROI for cortical bone influenced the IT (r  =  0.518, P  =  .40) and the PS of miniscrews (r  =  0.713, P  =  .001, Table 2). However, the total bone BMD (verified by CBCT and DEXA) and trabecular bone BMD presented weak and not statistically significant correlations with primary stability. Conclusions: There was a positive correlation between total bone block BMD measured by DEXA and CBCT. The cortical BMD influenced the IT and PS.


Sign in / Sign up

Export Citation Format

Share Document