Seismic Damage Assessment of Reinforced Concrete Grain Silos

Author(s):  
Sonia Benkhellat ◽  
Ouassila Kada ◽  
Abdelghani Seghir ◽  
Mohammed Kadri

This paper deals with seismic performance and damage assessment of concrete grain silos. An existing large silo is taken as a case study to conduct the numerical analyses. A global damage index based on target displacement is proposed to quantify numerically different damage states of the structure. To this aim, the classical N2 method is extended to adaptive multimodal to evaluate seismic performance of the structure for increasing pic ground acceleration levels with taking into account degradation of stiffness and modification of modal characteristics. The seismic capacity of the silo is evaluated, as an averaged curve, by conducting pushover and several incremental dynamic analyses using artificial and recorded accelerograms. The seismic demand is derived from the design spectrum of the Algerian seismic code (RPA 2003). The target displacement is determined by taking into account both the participation of the dominant modes, and the degradation of the structure’s modal characteristics. The nonlinear behavior of the structure’s walls is modeled by using nonlinear multilayered shell elements. The effect of the stored granular material is included through distributed equivalent masses. It is found that when the structure modal characteristics are updated as its stiffness is degraded, the target displacement is correctly computed. Whereas, it wrongly grows indefinitely, with increasing PGA, when constant modal characteristics of the intact structure are assumed, as usually done. The proposed global damage index is compared to three existing reliable indices. It better reflects the different damage states of studied silo.

Author(s):  
Chien-Kuo Chiu ◽  
Hsin-Fang Sung ◽  
Kai-Ning Chi ◽  
Fu-Pei Hsiao

Abstract To quantify the post-earthquake residual seismic capacity of reinforced concrete (RC) column members, experimental data for 6 column specimens with flexural, flexural–shear and shear failure modes are used to derive residual seismic capacity of damaged RC column members for specified damage states in this work. Besides of the experiment data, some related researches are also investigated to suggest the reduction factors of strength, stiffness and energy dissipation capacity for damaged RC column members, respectively. According to the damage states of RC columns, their corresponding seismic reduction factors are suggested herein. Taking an RC column with the flexural–shear failure for an example, its reductions factors of strength, stiffness and energy dissipation capacity are 0.5, 0.6 and 0.1, respectively. This work also proposes the seismic performance assessment method for the residual seismic performance of earthquake-damaged RC buildings. In the case study, this work selects one actual earthquake-damaged school building to demonstrate the post-earthquake assessment of seismic performance for a damaged RC building.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Luis A. Pinzón ◽  
Luis G. Pujades ◽  
Irving Medranda ◽  
Rodrigo E. Alva

In this work, the directionality effects during the MW 7.8 earthquake, which occurred in Muisne (Ecuador) on 16 April 2016, were analyzed under two perspectives. The first one deals with the influence of these effects on seismic intensity measures (IMs), while the second refers to the assessment of the expected damage of a specific building located in Manta city, Ecuador, as a function of its azimuthal orientation. The records of strong motion in 21 accelerometric stations were used to analyze directionality in seismic actions. At the closest station to the epicenter (RRup = 20 km), the peak ground acceleration was 1380 cm/s2 (EW component of the APED station). A detailed study of the response spectra ratifies the importance of directionality and confirms the need to consider these effects in seismic hazard studies. Differences between IMs values that consider the directionality and those obtained from the as-recorded accelerograms are significant and they agree with studies carried out in other regions. Concerning the variation of the expected damage with respect to the building orientation, a reinforced concrete building, which was seriously affected by the earthquake, was taken as a case study. For this analysis, the accelerograms recorded at a nearby station and detailed structural documentation were used. The ETABS software was used for the structural analysis. Modal and pushover analyses were performed, obtaining capacity curves and capacity spectra in the two main axes of the building. Two advanced methods for damage assessment were used to obtain fragility and mean damage state curves. The performance points were obtained through the linear equivalent approximation. This allows estimation and analysis of the expected mean damage state and the probability of complete damage as functions of the building orientation. Results show that the actual probability of complete damage is close to 60%. This fact is mainly due to the greater severity of the seismic action in one of the two main axes of the building. The results are in accordance with the damage produced by the earthquake in the building and confirm the need to consider the directionality effects in damage and seismic risk assessments.


Author(s):  
Chin-Hsiung Loh ◽  
Min-Hsuan Tseng ◽  
Shu-Hsien Chao

One of the important issues to conduct the damage detection of a structure using vibration-based damage detection (VBDD) is not only to detect the damage but also to locate and quantify the damage. In this paper a systematic way of damage assessment, including identification of damage location and damage quantification, is proposed by using output-only measurement. Four level of damage identification algorithms are proposed. First, to identify the damage occurrence, null-space and subspace damage index are used. The eigenvalue difference ratio is also discussed for detecting the damage. Second, to locate the damage, the change of mode shape slope ratio and the prediction error from response using singular spectrum analysis are used. Finally, to quantify the damage the RSSI-COV algorithm is used to identify the change of dynamic characteristics together with the model updating technique, the loss of stiffness can be identified. Experimental data collected from the bridge foundation scouring in hydraulic lab was used to demonstrate the applicability of the proposed methods. The computation efficiency of each method is also discussed so as to accommodate the online damage detection.


2011 ◽  
Vol 38 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Elena Nuta ◽  
Constantin Christopoulos ◽  
Jeffrey A. Packer

The seismic response of tubular steel wind turbine towers is of significant concern as they are increasingly being installed in seismic areas and design codes do not clearly address this aspect of design. The seismic hazard is hence assessed for the Canadian seismic environment using implicit finite element analysis and incremental dynamic analysis of a 1.65 MW wind turbine tower. Its behaviour under seismic excitation is evaluated, damage states are defined, and a framework is developed for determining the probability of damage of the tower at varying seismic hazard levels. Results of the implementation of this framework in two Canadian locations are presented herein, where the risk was found to be low for the seismic hazard level prescribed for buildings. However, the design of wind turbine towers is subject to change, and the design spectrum is highly uncertain. Thus, a methodology is outlined to thoroughly investigate the probability of reaching predetermined damage states under any seismic loading conditions for future considerations.


2021 ◽  
Vol 11 (22) ◽  
pp. 10745
Author(s):  
Sajib Sarker ◽  
Dookie Kim ◽  
Md Samdani Azad ◽  
Chana Sinsabvarodom ◽  
Seongoh Guk

This research identifies the significant optimal intensity measures (IM) for seismic performance assessments of the fixed offshore jacket platforms. A four-legged jacket platform for the oil and gas operation is deployed to investigate the seismic performance. The jacket platform is applied with nonlinearly modeled using finite element (FE) software OpenSees. A total of 80 ground motions and 21 different IMs are incorporated for numerical analyses. Nonlinear time-history analyses are performed to obtain the jacket structure’s engineering demand parameters (EDP): peak acceleration and displacement at the top of the structure. Four important statistical parameters: practicality, efficiency, proficiency, and coefficient of determination, are then calculated to find the significant IMs for seismic performance of the jacket structure. The results show that acceleration-related IMs: effective design acceleration (EDA), A95 parameter, and peak ground acceleration (PGA) are optimal IMs, and the acceleration-related IMs have good agreements with the acceleration-related EDP.


2018 ◽  
Vol 29 (1) ◽  
pp. 378-392
Author(s):  
Eleni Vrochidou ◽  
Petros-Fotios Alvanitopoulos ◽  
Ioannis Andreadis ◽  
Anaxagoras Elenas

Abstract This research provides a comparative study of intelligent systems in structural damage assessment after the occurrence of an earthquake. Seismic response data of a reinforced concrete structure subjected to 100 different levels of seismic excitation are utilized to study the structural damage pattern described by a well-known damage index, the maximum inter-story drift ratio (MISDR). Through a time-frequency analysis of the accelerograms, a set of seismic features is extracted. The aim of this study is to analyze the performance of three different techniques for the set of the proposed seismic features: an artificial neural network (ANN), a Mamdani-type fuzzy inference system (FIS), and a Sugeno-type FIS. The performance of the models is evaluated in terms of the mean square error (MSE) between the actual calculated and estimated MISDR values derived from the proposed models. All models provide small MSE values. Yet, the ANN model reveals a slightly better performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Sahar Mohammadzadeh Osalu ◽  
Hamzeh Shakib

In this research, the probabilistic seismic performance of asymmetric reinforced concrete wall-frame buildings with different strength distributions incorporating foundation flexibility effects is examined. By using probability-based performance evaluation approach, it is possible to provide a more accurate prediction of the different strength distribution effect on the seismic performance of asymmetric buildings and find the most efficient strength distribution for meeting each performance level. These efficient distributions can be adopted in the performance-based design of asymmetric buildings. For this purpose, first, the regression analysis and the concepts of efficiency and sufficiency were used to determine an optimal intensity measure (IM) for incremental dynamic analysis and evaluating the seismic response of the considered building models. Then, the proper magnitude of interstory drift capacity for this type of buildings in each limit state was estimated using the damage index concept. Finally, the effects of different strength distributions and the flexibility of foundation were studied on the seismic performance of the asymmetric buildings by investigating the mean annual frequencies of exceeding structural performance levels and confidence levels to satisfy performance objectives. It is concluded that irregular distributions of stiffness and strength in the plan of a building highly affect the seismic performance of buildings. Also, the results show that the optimum strength distribution is a function of the objective performance level and these optimum strength distributions are the same for both fixed- and flexible-base conditions. Meanwhile, the flexible effect of foundation increases the mean annual frequencies of exceedance within the range of 10% to 45% and significantly decreases the confidence levels in most cases.


Sign in / Sign up

Export Citation Format

Share Document