scholarly journals Orders of torsion units of integral reality-based algebras with rational multiplicities

2018 ◽  
Vol 17 (01) ◽  
pp. 1850015
Author(s):  
Gurmail Singh ◽  
Allen Herman

A reality-based algebra (RBA) is a finite-dimensional associative algebra with involution over [Formula: see text] whose distinguished basis [Formula: see text] contains [Formula: see text] and is closed under pseudo-inverse. An integral RBA is one whose structure constants in its distinguished basis are integers. If the algebra has a one-dimensional representation taking positive values on [Formula: see text], then we say that the RBA has a positive degree map. These RBAs have a standard feasible trace, and the multiplicities of the irreducible characters in the standard feasible trace are the multiplicities of the RBA. In this paper, we show that for integral RBAs with positive degree map whose multiplicities are rational, any finite subgroup of torsion units whose elements are all of degree [Formula: see text] and have algebraic integer coefficients must have order dividing a certain positive integer determined by the degree map and the multiplicities. The paper concludes with a thorough investigation of the properties of RBAs that force multiplicities to be rational.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Carlos A. M. André ◽  
João Dias

Abstract We consider smooth representations of the unit group G = A × G=\mathcal{A}^{\times} of a finite-dimensional split basic algebra 𝒜 over a non-Archimedean local field. In particular, we prove a version of Gutkin’s conjecture, namely, we prove that every irreducible smooth representation of 𝐺 is compactly induced by a one-dimensional representation of the unit group of some subalgebra of 𝒜. We also discuss admissibility and unitarisability of smooth representations of 𝐺.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
J. D. Audu ◽  
A. Boumenir ◽  
K. M. Furati ◽  
I. O. Sarumi

<p style='text-indent:20px;'>In this paper we examine the identification problem of the heat sink for a one dimensional heat equation through observations of the solution at the boundary or through a desired temperature profile to be attained at a certain given time. We make use of pseudo-spectral methods to recast the direct as well as the inverse problem in terms of linear systems in matrix form. The resulting evolution equations in finite dimensional spaces leads to fast real time algorithms which are crucial to applied control theory.</p>


2015 ◽  
Vol 63 (1) ◽  
pp. 295-303
Author(s):  
H. Sano

Abstract This paper is concerned with the problem of stabilizing one-dimensional parabolic systems related to formations by using finitedimensional controllers of a modal type. The parabolic system is described by a Sturm-Liouville operator, and the boundary condition is different from any of Dirichlet type, Neumann type, and Robin type, since it contains the time derivative of boundary values. In this paper, it is shown that the system is formulated as an evolution equation with unbounded output operator in a Hilbert space, and further that it is stabilized by using an RMF (residual mode filter)-based controller which is of finite-dimension. A numerical simulation result is also given to demonstrate the validity of the finite-dimensional controller


Author(s):  
Zhiyuan Li ◽  
Feng-Fei Jin

This paper is concerned with the boundary error feedback regulation for a one-dimensional anti-stable wave equation with distributed disturbance generated by a finite-dimensional exogenous system. Transport equation and regulator equation are introduced first to deal with the anti-damping on boundary and the distributed disturbance of the original system. Then, the tracking error and its derivative are measured to design an observer for both exosystem and auxiliary partial differential equation (PDE) system to recover the state. After proving the well-posedness of the regulator equations, we propose an observer-based controller to regulate the tracking error to zero exponentially and keep the states of all the internal loop uniformly bounded. Finally, some numerical simulations are presented to validate the effectiveness of the proposed controller.


1970 ◽  
Vol 13 (4) ◽  
pp. 463-467 ◽  
Author(s):  
F. W. Lemire

Let L denote a semi-simple, finite dimensional Lie algebra over an algebraically closed field K of characteristic zero. If denotes a Cartan subalgebra of L and denotes the centralizer of in the universal enveloping algebra U of L, then it has been shown that each algebra homomorphism (called a "mass-function" on ) uniquely determines a linear irreducible representation of L. The technique involved in this construction is analogous to the Harish-Chandra construction [2] of dominated irreducible representations of L starting from a linear functional . The difference between the two results lies in the fact that all linear functionals on are readily obtained, whereas since is in general a noncommutative algebra the construction of mass-functions is decidedly nontrivial.


1994 ◽  
Vol 72 (7-8) ◽  
pp. 326-335 ◽  
Author(s):  
D. J. Britten ◽  
J. Hooper ◽  
F. W. Lemire

In this paper we show that there exist exactly two nonequivalent simple infinite dimensional highest weight Cn modules having the property that every weight space is one dimensional. The tensor products of these modules with any finite-dimensional simple Cn module are proven to be completely reducible and we provide an explicit decomposition for such tensor products. As an application of these decompositions, we obtain two recursion formulas for computing the multiplicities of simple finite dimensional Cn modules. These formulas involve a sum over subgroups of index 2 in the Weyl group of Cn.


2020 ◽  
Vol 20 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Suzhen Jiang ◽  
Kaifang Liao ◽  
Ting Wei

AbstractIn this study, we consider an inverse problem of recovering the initial value for a multi-dimensional time-fractional diffusion-wave equation. By using some additional boundary measured data, the uniqueness of the inverse initial value problem is proven by the Laplace transformation and the analytic continuation technique. The inverse problem is formulated to solve a Tikhonov-type optimization problem by using a finite-dimensional approximation. We test four numerical examples in one-dimensional and two-dimensional cases for verifying the effectiveness of the proposed algorithm.


1968 ◽  
Vol 11 (3) ◽  
pp. 399-403 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional.


2015 ◽  
Vol 217 ◽  
pp. 95-132
Author(s):  
Alain Connes ◽  
Caterina Consani

AbstractWe show that the cyclic and epicyclic categories which play a key role in the encoding of cyclic homology and the lambda operations, are obtained from projective geometry in characteristic one over the infinite semifield ofmax-plus integersℤmax. Finite-dimensional vector spaces are replaced by modules defined by restriction of scalars from the one-dimensional free module, using the Frobenius endomorphisms of ℤmax. The associated projective spaces arefiniteand provide a mathematically consistent interpretation of Tits's original idea of a geometry over the absolute point. The self-duality of the cyclic category and the cyclic descent number of permutations both acquire a geometric meaning.


2016 ◽  
Vol 48 (A) ◽  
pp. 249-259 ◽  
Author(s):  
Omiros Papaspiliopoulos ◽  
Gareth O. Roberts ◽  
Kasia B. Taylor

AbstractWe introduce exact methods for the simulation of sample paths of one-dimensional diffusions with a discontinuity in the drift function. Our procedures require the simulation of finite-dimensional candidate draws from probability laws related to those of Brownian motion and its local time, and are based on the principle of retrospective rejection sampling. A simple illustration is provided.


Sign in / Sign up

Export Citation Format

Share Document