scholarly journals A PIV COMPARISON OF THE FLOW FIELD AND WALL SHEAR STRESS IN RIGID AND COMPLIANT MODELS OF HEALTHY CAROTID ARTERIES

2016 ◽  
Vol 17 (03) ◽  
pp. 1750041 ◽  
Author(s):  
PATRICK H. GEOGHEGAN ◽  
MARK C. JERMY ◽  
DAVID S. NOBES

Certain systems relevant to circulatory disease have walls which are neither rigid nor static, for example, the coronary arteries, the carotid artery and the heart chambers. In vitro modeling allows the fluid mechanics of the circulatory system to be studied without the ethical and safety issues associated with animal and human experiments. Computational methods in which the equations are coupled governing the flow and the elastic walls are maturing. Currently there is a lack of experimental data in compliant arterial systems to validate the numerical predictions. Previous experimental work has commonly used rigid wall boundaries, ignoring the effect of wall compliance. Particle Image Velocimetry is used to provide a direct comparison of both the flow field and wall shear stress (WSS) observed in experimental phantoms of rigid and compliant geometries representing an idealized common carotid artery. The input flow waveform and the mechanical response of the phantom are physiologically realistic. The results show that compliance affects the velocity profile within the artery. A rigid boundary causes severe overestimation of the peak WSS with a maximum relative difference of 61% occurring; showing compliance protects the artery from exposure to high magnitude WSS. This is important when trying to understand the development of diseases like atherosclerosis. The maximum, minimum and time averaged WSS in the rigid geometry was 2.3, 0.51 and 1.03[Formula: see text]Pa and in the compliant geometry 1.4, 0.58 and 0.84[Formula: see text]Pa, respectively.

2021 ◽  
Author(s):  
Zhiyong Song ◽  
Pengrui Zhu ◽  
Lianzhi Yang ◽  
Zhaohui Liu ◽  
Hua Li ◽  
...  

Abstract BackgroundAtherosclerosis is an important cause of cardiovascular disease. The wall shear stress (WSS) is one of the key factors of plaque formation and dislodgement. Currently, WSS estimation is based on measurement of the blood velocity gradient. However, due to the lack of flow field measurements in carotid stenosis vessels, the two distribution forms (parabolic and non-parabolic) commonly considered in numerical simulations could cause WSS estimates to differ by more than 40%, which could seriously affect the accuracy of mechanical analysis. MethodsThis study was the first to apply 3D printing technology to create an experimental model of real-structure carotid arteries. Microparticle image velocimetry (micro-PIV) was adopted to comprehensively measure blood velocity field data at the stenosis location, providing experimental validation of numerical simulation (Fluent; finite volume method) results. Then, the flow field was simulated at a normal human heart rate (45-120 beats per minute). ResultsThis study revealed that when blood flowed across the carotid artery stenosis location, the velocity distribution was not parabolic but rather a plateau-shaped distribution, with a similar flow velocity in the central area (more than 65% of the total flow path). The WSS values calculated based on a parabolic velocity distribution and the maximum velocity were nearly 60% lower.ConclusionThis study provides a reliable method for WSS determination to better understand the vascular stenosis location and facilitate flow and shear force field research. In the future, it is necessary to carry out in-depth research on the relationship between the plaque shape, flow field distribution and WSS, and amendments to the calculated WSS for clinical stenosis should be proposed.


Author(s):  
Nicolas A. Buchmann ◽  
Mark C. Jermy

This work presents Particle Image Velocimetry (PIV) measurements in idealised and patient specific human carotid artery bifurcations (CAB) under steady and pulsatile flow. The geometry and corresponding boundary conditions were obtained by Magnetic Resonance Imaging (MRI) and replicated in an in-vitro model. A complex three-dimensional flow structure exists inside the CAB and vorticity and wall shear stress data are used to quantify the differences between the idealised and patient specific geometry.


2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa

2021 ◽  
Vol 22 (11) ◽  
pp. 5635
Author(s):  
Katharina Urschel ◽  
Miyuki Tauchi ◽  
Stephan Achenbach ◽  
Barbara Dietel

In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as “wall shear stress (WSS)”, and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.


2007 ◽  
Vol 26 (3) ◽  
pp. 598-605 ◽  
Author(s):  
Frieke M.A. Box ◽  
Rob J. van der Geest ◽  
Jeroen van der Grond ◽  
Matthias J.P. van Osch ◽  
Aeilko H. Zwinderman ◽  
...  

Author(s):  
Han-Sheng Chuang ◽  
Steven T. Wereley

Conventional single pixel evaluation (SPE) significantly improves the spatial resolution of PIV measurements to the physical limit of a CCD camera based on the forward difference interrogation (FDI). This paper further enhances the computational algorithm to second-order accuracy by simply modifying the numerical scheme with the central difference interrogation (CDI). The proposed central difference scheme basically superposes the forward-time and the backward-time correlation domains, thus resulting in reduced bias error as well as rapid background noise elimination. An assessment of the CDI SPE algorithm regarding the measurement errors was achieved via numerous synthetic images subject to a four-roll mill flow. In addition, preliminary wall shear stress (WSS) measurements regarding different algorithms are also evaluated with an analytical turbulent boundary flow. CDI scheme showed a 0.32% error deviated from the analytical solution and improved the same error in FFT-based correlation correlation (FFT-CC) by 32.35%. To demonstrate the performance in practice, in-vitro measurements were implemented in a serpentine microchannel made of polydimethyl siloxane (PDMS) for both CDI SPE and spatial cross-correlation. A series of steady-state flow images at five specified regions of interest were acquired using micro-PIV system. Final comparisons of the WSS regarding the Pearson correlation coefficient, R2, between the numerical schemes and the simulations showed that an overall result was improved by CDI SPE due to the fine resolution and the enhanced accuracy.


Author(s):  
Guillaume Goudot ◽  
Jonathan Poree ◽  
Olivier Pedreira ◽  
Lina Khider ◽  
Pierre Julia ◽  
...  

Objective Carotid plaque vulnerability assessment could guide the decision to perform endarterectomy. Ultrafast ultrasound imaging (UF) can evaluate local flow velocities over an entire 2D image, allowing measurement of the wall shear stress (WSS). We aimed at evaluating the feasibility of WSS measurement in a prospective series of patients with carotid stenosis. Methods UF acquisitions, performed with a linear probe, had an effective frame rate of 5000 Hz. The flow velocity was imaged over the entire plaque area. WSS was computed with the vector field speed using the formula: with the blood velocity and μ, the blood viscosity. The WSS measurement method was validated using a calibrated phantom. In vivo, WSS was analyzed in 5 areas of the carotid wall: common carotid artery, plaque ascent, plaque peak, plaque descent, internal carotid artery. Results Good correlation was found between in vitro measurement and the theoretical WSS values (R2 = 0.95; p < 0.001). 33 patients were prospectively evaluated, with a median carotid stenosis degree of 80 % [75–85]. The maximum WSS value over the cardiac cycle follows the shape of the plaque with an increase during the ascent, reaching its maximum value of 3.25 Pa [2.26–4.38] at the peak of the plaque, and a decrease after passing of the peak (0.93 Pa [0.80–1.19]) lower than the WSS values in the non-stenotic areas (1.47 Pa [1.12–1.77] for the common carotid artery). Conclusion UF allowed local and direct evaluation of the plaque’s WSS, thus better characterizing local hemodynamics to identify areas of vulnerability. Key Points: 


Sign in / Sign up

Export Citation Format

Share Document