Land Cover Change Detection from Remotely Sensed IoT Data for Assessment of Land Degradation: A Survey

2021 ◽  
Vol 20 (Supp01) ◽  
pp. 2140011
Author(s):  
Rohini Selvaraj ◽  
Suresh Kumar Nagarajan

As the contamination over the surface of the earth is increasing exponentially, the land cover and land use detection techniques are considered as important elements in mapping and monitoring the land degradation. Remote sensing plays a vital role in identifying the land changes over the period of time. As land degradation occurs, resource demand will increase and reliable service to achieve land neutrality will increase. Connected device (IoT) could be used to achieve this neutrality in an intelligent and effective manner. Innumerable change detection methods have been developed for as far back as five decades. These studies deal in detail about the different satellite imagery data, image preprocessing techniques and the discussion of pixel-based and object-based change detection techniques. In addition, the dataset, preprocessing and change detection technique are interrelated with each other and their connection between the techniques are clarified dependent on the element of image analysis. The merits and limitation of different methods are also explained in detail.

Author(s):  
S. Pathak

Land use and land cover are dynamic and is an important component in understanding the interactions of the human activities with the environment and thus it is necessary to simulate environmental changes. Land use/cover (LU/LC) change detection is very essential for better understanding of landuse dynamic during a known period of time for sustainable management. Mining is one of the most dynamic processes with direct as well as indirect impact on the environment. Hence, mine area provides ideal situation for evaluating the chronological changes in land-use patterns. Digital change detection of satellite data at different time interval helps in analyzing the changes in the spatial extent of mine along with the associated activities. In present study, various algorithms Iteratively Re-weighted Multivariate Alteration Detection (MAD) on raw data where class wise comparison becomes a difficult proposition and object based segmentation and change detection as post classification comparison were assessed.


Author(s):  
Djamel Bouchaffra ◽  
Faycal Ykhlef

The need for environmental protection, monitoring, and security is increasing, and land cover change detection (LCCD) can aid in the valuation of burned areas, the study of shifting cultivation, the monitoring of pollution, the assessment of deforestation, and the analysis of desertification, urban growth, and climate change. Because of the imminent need and the availability of data repositories, numerous mathematical models have been devised for change detection. Given a sample of remotely sensed images from the same region acquired at different dates, the models investigate if a region has undergone change. Even if there is no substantial advantage to using pixel-based classification over object-based classification, a pixel-based change detection approach is often adopted. A pixel can encompass a large region, and it is imperative to determine whether this pixel (input) has changed or not. A changed image is compared to the available ground truth image for pixel-based performance evaluation. Some existing change detection systems do not take into account reversible changes due to seasonal weather effects. In other words, when snow falls in a region, the land cover is not considered as a change because it is seasonal (reversible). Some approaches exploit time series of Landsat images, which are based on the Normalized Difference Vegetation Index technique. Others evaluate built-up expansion to assess urban morphology changes using an unsupervised approach that relies on labels clustering. Change detection methods have also been applied to the field of disaster management using object-oriented image classification. Some methodologies are based on spectral mixture analysis. Other techniques invoke a similarity measure based on the evolution of the local statistics of the image between two dates for vegetation LCCD. Probabilistic approaches based on maximum entropy have been applied to vegetation and forest areas, such as Hustai National Park in Mongolia. Researchers in this field have proposed an LCCD scheme based on a feed-forward neural network using backpropagation for training. This paper invokes the new concept of homology theory, a subfield of algebraic topology. Homology theory is incorporated within a Structural Hidden Markov Model.


Author(s):  
M. Kaur ◽  
S. Singh ◽  
V. K. Verma ◽  
B. Pateriya

Morphometric analysis is the measurement and mathematical analysis of the landforms. The delineation of drainage system is of utmost importance in understanding hydrological system of an area, water resource management and it's planning in an effective manner. Morphometric analysis and land use change detection of two sub-watersheds namely Kukar Suha and Ratewal of district Shahid Bhagat Singh Nagar, Punjab, India was carried out for quantitative description of drainage and characterisation. The stream order, stream number, stream length, mean stream length, and other morphometric analysis like bifurcation ratio, drainage density, texture, relief ratio, ruggedness number etc. were measured. The drainage pattern of Kukar Suha and Ratewal is mainly dendritic. The agriculture and settlements came up along the drainage network causes the pattern disturbance in the watershed. The study was undertaken to spotlight the morphometric parameters, their impact on the basin and the land use land cover changes occurred over the period of time. Morphometric parameters such as linear aspect, areal aspect and relief aspect of the watershed are computed. The land use/land cover change was extracted from LISS IV Mx + Cartosat1 PAN data. ASTER data is used to prepare DEM (digital elevation model) and geographical information system (GIS) was used to evaluate various morphometric parameters in ArcGIS10 software.


2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.


2019 ◽  
Vol 11 (5) ◽  
pp. 570 ◽  
Author(s):  
Inacio Bueno ◽  
Fausto Acerbi Júnior ◽  
Eduarda Silveira ◽  
José Mello ◽  
Luís Carvalho ◽  
...  

Change detection methods are often incapable of accurately detecting changes within time series that are heavily influenced by seasonal variations. Techniques for de-seasoning time series or methods that apply the spatial context have been used to improve the results of change detection. However, few studies have explored Landsat’s shortwave infrared channel (SWIR 2) to discriminate between seasonal changes and land use/land cover changes (LULCC). Here, we explored the effectiveness of Operational Land Imager (OLI) spectral bands and vegetation indices for detecting deforestation in highly seasonal areas of Brazilian savannas. We adopted object-based image analysis (OBIA), applying a multidate segmentation to an OLI time series to generate input data for discrimination of deforestation from seasonal changes using the Random Forest (RF) algorithm. We found adequate separability between deforested objects and seasonal changes using SWIR 2. Using spectral indices computed from SWIR 2, the RF algorithm generated a change map with an overall accuracy of 88.3%. For deforestation, the producer’s accuracy was 88.0% and the user’s accuracy was 84.6%. The SWIR 2 channel as well as the mid-infrared burn index presented the highest importance among spectral variables computed by the RF average impurity decrease measure. Our results give support to further change detection studies regarding to suitable spectral channels and provided a useful foundation for savanna change detection using an object-based method applied to Landsat time series.


2015 ◽  
Vol 8 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Daniel Hölbling ◽  
Barbara Friedl ◽  
Clemens Eisank

Abstract Earth observation (EO) data are very useful for the detection of landslides after triggering events, especially if they occur in remote and hardly accessible terrain. To fully exploit the potential of the wide range of existing remote sensing data, innovative and reliable landslide (change) detection methods are needed. Recently, object-based image analysis (OBIA) has been employed for EO-based landslide (change) mapping. The proposed object-based approach has been tested for a sub-area of the Baichi catchment in northern Taiwan. The focus is on the mapping of landslides and debris flows/sediment transport areas caused by the Typhoons Aere in 2004 and Matsa in 2005. For both events, pre- and post-disaster optical satellite images (SPOT-5 with 2.5 m spatial resolution) were analysed. A Digital Elevation Model (DEM) with 5 m spatial resolution and its derived products, i.e., slope and curvature, were additionally integrated in the analysis to support the semi-automated object-based landslide mapping. Changes were identified by comparing the normalised values of the Normalized Difference Vegetation Index (NDVI) and the Green Normalized Difference Vegetation Index (GNDVI) of segmentation-derived image objects between pre- and post-event images and attributed to landslide classes.


Sign in / Sign up

Export Citation Format

Share Document