Evolution of Hydroforming Technologies and Its Applications — A Review

2020 ◽  
Vol 19 (04) ◽  
pp. 737-780
Author(s):  
P. Venkateshwar Reddy ◽  
B. Veerabhadra Reddy ◽  
P. Janaki Ramulu

Advanced forming technologies have been evolving at a rapid pace with the products applicability in the industrial fields of aerospace and automobile especially for the materials like aluminum and titanium alloys (light weight) and ultra-high strength steels. Innovative forming methods like hydroforming (tube and sheet) have been proposed for industries throughout the world. The ever-increasing needs of the automotive industry have made hydroforming technology an impetus one for the development and innovations. In this paper, the review on various developments towards lightweight materials for different applications is presented. The influencing process parameters considering the different characteristics of the tube and sheet hydroforming process have also been presented. General ideas and mechanical improvements in sheet and tube hydroforming are given late innovative work exercises. This review will help researchers and industrialists about the history, state of the art in hydroforming technologies of the lightweight materials.

2005 ◽  
Vol 6-8 ◽  
pp. 1-12 ◽  
Author(s):  
Taylan Altan ◽  
H. Palaniswamy ◽  
G. Ambrogio ◽  
Yingyot Aue-u-Ian

Tube Hydroforming is a well accepted production technology in automotive industry while sheet hydroforming is used in selected cases for prototyping and low volume production. Research in advanced methods (warm sheet and tube hydroforming, double blank sheet hydroforming, combination of hydroforming and mechanical sizing, use of multi-point and elastic blank holders) is expanding the capabilities of hydroforming technologies to produce parts from Al and Mg alloys, as well as Ultra High Strength Steels. In the development of advanced hydroforming methods, experience based knowledge is not readily available. Thus, robust process simulation is required, along with adequate material modeling and identification of friction coefficients as input to process simulation. This paper gives an overview of advanced hydroforming methods, including examples of novel machine and tooling designs. The use of reliable process simulation is illustrated with examples that demonstrate the significance of material and friction date for making accurate predictions. Advanced simulation methods for warm forming and for programming multiple-point blank holder are also discussed. This review illustrates that hydroforming continues to make advances and has the potential to make many contributions to production technology in the near future.


Author(s):  
K J Kim ◽  
S T Won ◽  
Y H Lee ◽  
D S Bae ◽  
C W Sung ◽  
...  

The automotive industry has shown a growing interest in tube hydroforming during recent years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra-high-strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behaviour during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear subframe parts development by tube hydroforming using steel material having a tensile strength of 440MPa is presented. At the part design stage, it requires a feasibility study and process design assisted by computer aided engineering to confirm hydroformability in detail. The effects of parameters such as internal pressure, axial feeding, and geometry shape in the automotive rear subframe by the hydroforming process were carefully investigated. The overall possibility of hydroformable rear subframe parts could be examined by cross-sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of a prototyping tool are designed and interference with a press is examined from the point of geometry and thinning.


2009 ◽  
Vol 410-411 ◽  
pp. 61-68 ◽  
Author(s):  
Marion Merklein ◽  
Martin Grüner

The need of light weight construction for high efficient vehicles leads to the use of new materials like aluminium and magnesium alloys or high strength and ultra high strength steels. At elevated temperatures the formability of steel increases as the flow stresses decrease. Forming high complex geometries like chassis components or components of the exhaust system of vehicles can be done by hydroforming. The hydroforming process by oils is limited to temperatures of approximately 300 °C and brings disadvantages of possible leakage and fouling. Using granular material like small ceramic beads as medium could be an approach for hydroforming of ultra high strength steels like MS W1200 and CP W800 at temperatures up to 600 °C. The material properties of granular material are in some points similar to solid bodies, in other points similar to liquids. For understanding and simulation of the behaviour of the medium a basic characterisation of ceramic beads with different ball diameters is necessary. Powder mechanics and soil engineering give ideas for experimental setups. For the conversion of these approaches on the one hand the behaviour of the ceramic beads itself has to be characterized, on the other hand the contact between a blank and the beads have to be investigated. For the tests three different kinds of spheres with a diameter between 63 microns and 850 microns are used. In unidirectional compression test compressibility, pressure distribution in compression direction and transversal compression direction and the effect of bead fracture are investigated. The tests are carried out at different compression velocities and for multiple compressions. For determination of friction coefficients between blank and beads and determination of shear stress in bulk under compression a modified Jenike-Shear-Cell for use in universal testing machines with the possibility of hydraulic compression of the beads is built up. The gained data can be used for material modelling in ABAQUS using Mohr-Coulomb or Drucker-Prager model.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

2014 ◽  
Vol 775-776 ◽  
pp. 136-140 ◽  
Author(s):  
Renato Araujo Barros ◽  
Antonio Jorge Abdalla ◽  
Humberto Lopes Rodrigues ◽  
Marcelo dos Santos Pereira

The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainític structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 631 ◽  
Author(s):  
Hamid Bayat ◽  
Sayantan Sarkar ◽  
Bharath Anantharamaiah ◽  
Francesco Italiano ◽  
Aleksandar Bach ◽  
...  

Increased passenger safety and emission control are two of the main driving forces in the automotive industry for the development of light weight constructions. For increased strength to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their material properties due to e.g., the manufacturing processes. In this work, a robust numerical model is developed in order to take the scatter into account in the prediction of the failure in manganese boron steel (22MnB5). To this end, the underlying material properties which determine the shapes of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski model is applied to determine the failure limits. By using a statistical approach, the material scatter is quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from simulations is verified experimentally. By generation of the so called forming limit bands (FLBs), the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC. In this way, the FLBs separate the whole region into safe, necking and failed zones.


Sign in / Sign up

Export Citation Format

Share Document