Magnetic abrasive polishing of Stainless Steel SS304 with diamond-based sintered magnetic abrasives

Author(s):  
Jagdeep Singh Gill ◽  
Lakhvir Singh
2018 ◽  
Vol 7 (2) ◽  
pp. 17-20
Author(s):  
Harnam Singh Farwaha ◽  
Dharmpal Deepak

Some of the materials used in modern industries and industrial applications are difficult to finish with high degree of accuracy and minimal surface defects using conventional machining and polishing techniques. Stainless steel is one such widely used material that is ductile, tough and difficult to finish with traditional processes. This study aims to finish effectively the thin 316 L stainless steel plate using nontraditional technique as it is very difficult to finish using traditional technique. Response Surface Methodology approach for experimental design (Box-Behnken) is used for performing and analyzing the experimental work. Box-Behnken design is having the maximum efficiency for an experiment involving three factors and three levels. The experimental results indicate that the 316L stainless steel plate can be successfully finished with diamond sintered magnetic abrasives. The process yields best results of Rotational Speed = 200RPM, Feed = 40mm/sec and Machining Time = 60minutes for PISF. The PISF was improved by 45%.


2013 ◽  
Vol 741 ◽  
pp. 33-38
Author(s):  
Sang Oh Kim ◽  
Jae Seob Kwak

In this study, the process of magnetic abrasive polishing (MAP), installed permanent magnet to improved magnetic force on surface of wafer, was used for planarization of sapphire wafer. The surface roughness and polished area were investigated according to polishing time. The results showed that the improving strategy of magnetic force was helpful to improvethe roughness of sapphire and the polished area was gradually increased according to polishing time since the frictional heat between magnetic abrasives and wafer surface caused the improvement of fluidity for magnetic abrasive. In addition to, for using medium based on oil, the better improvement of surface roughness was achieved comparing to silicone gel medium of high viscosity.


2021 ◽  
Vol 60 (9) ◽  
pp. 2549
Author(s):  
Akash Tiwari ◽  
Fang Xu ◽  
Akhlesh Lakhtakia ◽  
Hitomi Yamaguchi ◽  
Satish T. S. Bukkapatnam

2009 ◽  
Vol 69-70 ◽  
pp. 143-147 ◽  
Author(s):  
Yan Hua Zou ◽  
Takeo Shinmura

This paper proposes a new magnetic field assisted machining process using a magnetic machining jig (permanent magnet tool) to finish the internal surface of thick tubing 5~30 mm in thickness. Because the magnetic machining jig consists of permanent magnets, it can generate a higher magnetic force (finishing force) than conventional magnetic abrasives, and makes possible the internal finishing of thick non-ferromagnetic tubing. First, the principle and the feature of this process were examined. It was compared that the difference of the mechanism of using the conventional magnetic abrasives and magnetic machining jig (magnet tool) was clarified. Next, a processing unit and magnetic machining jig were made, and the processing unit was set on a lathe machine. An experiment was performed on a thick SUS304 stainless steel tubing 5 mm in thickness. In this study, it was clarified that this processing method can improve the roundness of the inside tubing while improving the surface roughness. The results showed that the initial surface roughness of 6.5 μm Ra can be improved to 0.06 μm Ra, and the roundness of the inside tubing can be improved from 187 μm to 89 μm.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
R. Gonzalez ◽  
L. Bru

The analysis of stacking fault tetrahedra (SFT) in fatigued metals (1,2) is somewhat complicated, due partly to their relatively low density, but principally to the presence of a very high density of dislocations which hides them. In order to overcome this second difficulty, we have used in this work an austenitic stainless steel that deforms in a planar mode and, as expected, examination of the substructure revealed planar arrays of dislocation dipoles rather than the cellular structures which appear both in single and polycrystals of cyclically deformed copper and silver. This more uniform distribution of dislocations allows a better identification of the SFT.The samples were fatigue deformed at the constant total strain amplitude Δε = 0.025 for 5 cycles at three temperatures: 85, 293 and 773 K. One of the samples was tensile strained with a total deformation of 3.5%.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Author(s):  
A. Redjaïmia ◽  
J.P. Morniroli ◽  
G. Metauer ◽  
M. Gantois

2D and especially 3D symmetry information required to determine the crystal structure of four intermetallic phases present as small particles (average size in the range 100-500nm) in a Fe.22Cr.5Ni.3Mo.0.03C duplex stainless steel is not present in most Convergent Beam Electron Diffraction (CBED) patterns. Nevertheless it is possible to deduce many crystal features and to identify unambiguously these four phases by means of microdiffraction patterns obtained with a nearly parallel beam focused on a very small area (50-100nm).From examinations of the whole pattern reduced (RS) and full (FS) symmetries the 7 crystal systems and the 11 Laue classes are distinguished without ambiguity (1). By considering the shifts and the periodicity differences between the ZOLZ and FOLZ reflection nets on specific Zone Axis Patterns (ZAP) which depend on the crystal system, the centering type of the cell and the glide planes are simultaneously identified (2). This identification is easily done by comparisons with the corresponding simulated diffraction patterns.


Sign in / Sign up

Export Citation Format

Share Document