scholarly journals USING ATTRIBUTE BEHAVIOR DIVERSITY TO BUILD ACCURATE DECISION TREE COMMITTEES FOR MICROARRAY DATA

2012 ◽  
Vol 10 (04) ◽  
pp. 1250005 ◽  
Author(s):  
QIAN HAN ◽  
GUOZHU DONG

DNA microarrays (gene chips), frequently used in biological and medical studies, measure the expressions of thousands of genes per sample. Using microarray data to build accurate classifiers for diseases is an important task. This paper introduces an algorithm, called Committee of Decision Trees by Attribute Behavior Diversity (CABD), to build highly accurate ensembles of decision trees for such data. Since a committee's accuracy is greatly influenced by the diversity among its member classifiers, CABD uses two new ideas to "optimize" that diversity, namely (1) the concept of attribute behavior–based similarity between attributes, and (2) the concept of attribute usage diversity among trees. The ideas are effective for microarray data, since such data have many features and behavior similarity between genes can be high. Experiments on microarray data for six cancers show that CABD outperforms previous ensemble methods significantly and outperforms SVM, and show that the diversified features used by CABD's decision tree committee can be used to improve performance of other classifiers such as SVM. CABD has potential for other high-dimensional data, and its ideas may apply to ensembles of other classifier types.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2849
Author(s):  
Sungbum Jun

Due to the recent advance in the industrial Internet of Things (IoT) in manufacturing, the vast amount of data from sensors has triggered the need for leveraging such big data for fault detection. In particular, interpretable machine learning techniques, such as tree-based algorithms, have drawn attention to the need to implement reliable manufacturing systems, and identify the root causes of faults. However, despite the high interpretability of decision trees, tree-based models make a trade-off between accuracy and interpretability. In order to improve the tree’s performance while maintaining its interpretability, an evolutionary algorithm for discretization of multiple attributes, called Decision tree Improved by Multiple sPLits with Evolutionary algorithm for Discretization (DIMPLED), is proposed. The experimental results with two real-world datasets from sensors showed that the decision tree improved by DIMPLED outperformed the performances of single-decision-tree models (C4.5 and CART) that are widely used in practice, and it proved competitive compared to the ensemble methods, which have multiple decision trees. Even though the ensemble methods could produce slightly better performances, the proposed DIMPLED has a more interpretable structure, while maintaining an appropriate performance level.


2013 ◽  
Vol 9 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Andrei V. Kelarev ◽  
Jemal Abawajy ◽  
Andrew Stranieri ◽  
Herbert F. Jelinek

Cardiac complications of diabetes require continuous monitoring since they may lead to increased morbidity or sudden death of patients. In order to monitor clinical complications of diabetes using wearable sensors, a small set of features have to be identified and effective algorithms for their processing need to be investigated. This article focuses on detecting and monitoring cardiac autonomic neuropathy (CAN) in diabetes patients. The authors investigate and compare the effectiveness of classifiers based on the following decision trees: ADTree, J48, NBTree, RandomTree, REPTree, and SimpleCart. The authors perform a thorough study comparing these decision trees as well as several decision tree ensembles created by applying the following ensemble methods: AdaBoost, Bagging, Dagging, Decorate, Grading, MultiBoost, Stacking, and two multi-level combinations of AdaBoost and MultiBoost with Bagging for the processing of data from diabetes patients for pervasive health monitoring of CAN. This paper concentrates on the particular task of applying decision tree ensembles for the detection and monitoring of cardiac autonomic neuropathy using these features. Experimental outcomes presented here show that the authors' application of the decision tree ensembles for the detection and monitoring of CAN in diabetes patients achieved better performance parameters compared with the results obtained previously in the literature.


1986 ◽  
Vol 25 (04) ◽  
pp. 207-214 ◽  
Author(s):  
P. Glasziou

SummaryThe development of investigative strategies by decision analysis has been achieved by explicitly drawing the decision tree, either by hand or on computer. This paper discusses the feasibility of automatically generating and analysing decision trees from a description of the investigations and the treatment problem. The investigation of cholestatic jaundice is used to illustrate the technique.Methods to decrease the number of calculations required are presented. It is shown that this method makes practical the simultaneous study of at least half a dozen investigations. However, some new problems arise due to the possible complexity of the resulting optimal strategy. If protocol errors and delays due to testing are considered, simpler strategies become desirable. Generation and assessment of these simpler strategies are discussed with examples.


2021 ◽  
Vol 13 (2) ◽  
pp. 238
Author(s):  
Zhice Fang ◽  
Yi Wang ◽  
Gonghao Duan ◽  
Ling Peng

This study presents a new ensemble framework to predict landslide susceptibility by integrating decision trees (DTs) with the rotation forest (RF) ensemble technique. The proposed framework mainly includes four steps. First, training and validation sets are randomly selected according to historical landslide locations. Then, landslide conditioning factors are selected and screened by the gain ratio method. Next, several training subsets are produced from the training set and a series of trained DTs are obtained by using a DT as a base classifier couple with different training subsets. Finally, the resultant landslide susceptibility map is produced by combining all the DT classification results using the RF ensemble technique. Experimental results demonstrate that the performance of all the DTs can be effectively improved by integrating them with the RF ensemble technique. Specifically, the proposed ensemble methods achieved the predictive values of 0.012–0.121 higher than the DTs in terms of area under the curve (AUC). Furthermore, the proposed ensemble methods are better than the most popular ensemble methods with the predictive values of 0.005–0.083 in terms of AUC. Therefore, the proposed ensemble framework is effective to further improve the spatial prediction of landslides.


2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-38
Author(s):  
Víctor Adrián Sosa Hernández ◽  
Raúl Monroy ◽  
Miguel Angel Medina-Pérez ◽  
Octavio Loyola-González ◽  
Francisco Herrera

Experts from different domains have resorted to machine learning techniques to produce explainable models that support decision-making. Among existing techniques, decision trees have been useful in many application domains for classification. Decision trees can make decisions in a language that is closer to that of the experts. Many researchers have attempted to create better decision tree models by improving the components of the induction algorithm. One of the main components that have been studied and improved is the evaluation measure for candidate splits. In this article, we introduce a tutorial that explains decision tree induction. Then, we present an experimental framework to assess the performance of 21 evaluation measures that produce different C4.5 variants considering 110 databases, two performance measures, and 10× 10-fold cross-validation. Furthermore, we compare and rank the evaluation measures by using a Bayesian statistical analysis. From our experimental results, we present the first two performance rankings in the literature of C4.5 variants. Moreover, we organize the evaluation measures into two groups according to their performance. Finally, we introduce meta-models that automatically determine the group of evaluation measures to produce a C4.5 variant for a new database and some further opportunities for decision tree models.


2014 ◽  
Vol 6 (4) ◽  
pp. 346 ◽  
Author(s):  
Swathi Jamjala Narayanan ◽  
Rajen B. Bhatt ◽  
Ilango Paramasivam ◽  
M. Khalid ◽  
B.K. Tripathy

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangkui Jiang ◽  
Chang-an Wu ◽  
Huaping Guo

A forest is an ensemble with decision trees as members. This paper proposes a novel strategy to pruning forest to enhance ensemble generalization ability and reduce ensemble size. Unlike conventional ensemble pruning approaches, the proposed method tries to evaluate the importance of branches of trees with respect to the whole ensemble using a novel proposed metric called importance gain. The importance of a branch is designed by considering ensemble accuracy and the diversity of ensemble members, and thus the metric reasonably evaluates how much improvement of the ensemble accuracy can be achieved when a branch is pruned. Our experiments show that the proposed method can significantly reduce ensemble size and improve ensemble accuracy, no matter whether ensembles are constructed by a certain algorithm such as bagging or obtained by an ensemble selection algorithm, no matter whether each decision tree is pruned or unpruned.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jianhui Wu ◽  
Lu Zhang ◽  
Sufeng Yin ◽  
Haidong Wang ◽  
Guoli Wang ◽  
...  

The arrival of the era of big data has brought new ideas to solve problems for all walks of life. Medical clinical data is collected and stored in the medical field by utilizing the medical big data platform. Based on medical information big data, new ideas and methods for the differential diagnosis of hypo-MDS and AA are studied. The basic information, peripheral blood classification counts, peripheral blood cell morphology, bone marrow cell morphology, and other information were collected from patients diagnosed with hypo-MDS and AA diagnosed in the first diagnosis. First, statistical analysis was performed. Then, the logistic regression model, decision tree model, BP neural network model, and support vector machine (SVM) model of hypo-MDS and AA were established. The sensitivity, specificity, Youden index, positive likelihood ratio (+LR), negative likelihood ratio (−LR), area under curve (AUC), accuracy, Kappa value, positive predictive value (+PV), negative predictive value (−PV) of the four model training set and test set were compared, respectively. Finally, with the support of medical big data, using logistic regression, decision tree, BP neural network, and SVM four classification algorithms, the decision tree algorithm is optimal for the classification of hypo-MDS and AA and analyzes the characteristics of the optimal model misjudgment data.


2019 ◽  
pp. 287-322
Author(s):  
Dirk P. Kroese ◽  
Zdravko I. Botev ◽  
Thomas Taimre ◽  
Radislav Vaisman

Sign in / Sign up

Export Citation Format

Share Document