QUANTUMNESS OF ENSEMBLE FROM NO-BROADCASTING PRINCIPLE

2006 ◽  
Vol 04 (01) ◽  
pp. 105-118 ◽  
Author(s):  
MICHAł HORODECKI ◽  
PAWEł HORODECKI ◽  
RYSZARD HORODECKI ◽  
MARCO PIANI

Quantum information, though not precisely defined, is a fundamental concept of quantum information theory which predicts many fascinating phenomena and provides new physical resources. A basic problem is to recognize the features of quantum systems responsible for those phenomena. One of these important features is that non-commuting quantum states cannot be broadcast: two copies cannot be obtained out of a single copy, not even reproduced marginally on separate systems. We focus on the difference in information content between one copy and two copies, which is a basic manifestation of the gap between quantum and classical information. We show that if the chosen information measure is the Holevo quantity, the difference between the information content of one copy and two copies is zero if and only if the states can be broadcast. We propose a new approach in defining measures of quantumness of ensembles based on the difference in information content between the original ensemble and the ensemble of duplicated states. We comment on the permanence property of quantum states and the recently introduced superbroadcasting operation. We also provide an appendix where we discuss the status of quantum information in quantum physics, based on the so-called isomorphism principle.

2015 ◽  
Vol 13 (06) ◽  
pp. 1550039 ◽  
Author(s):  
A. Plastino ◽  
G. Bellomo ◽  
A. R. Plastino

We argue that the dimensionality of the space of quantum systems’ states should be considered as a legitimate resource for quantum information tasks. The assertion is supported by the fact that quantum states with discord-like capacities can be obtained from classically-correlated states in spaces of dimension large enough. We illustrate things with some simple examples that justify our claim.


2015 ◽  
Vol 112 (13) ◽  
pp. 3866-3873 ◽  
Author(s):  
Gershon Kurizki ◽  
Patrice Bertet ◽  
Yuimaru Kubo ◽  
Klaus Mølmer ◽  
David Petrosyan ◽  
...  

An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.


1998 ◽  
Vol 07 (01) ◽  
pp. 107-119
Author(s):  
Michael Danos

As a consequence of the Heisenberg uncertainty any quantum physics system inescapably undergoes relaxation towards thermal equilibrium, thus towards maximum entropy. The non-dissipative states have probability measure zero and cannot exist in nature. The impact these results have on chaotic behavior of quantum systems will be discussed, as well as the difference between quantum and classical systems, which have vanishing uncertainty.


2021 ◽  
Author(s):  
◽  
Del Rajan

<p>This thesis is in the field of quantum information science, which is an area that reconceptualizes quantum physics in terms of information.  Central to this area is the quantum effect of entanglement in space.  It is an interdependence among two or more spatially separated quantum systems that would be impossible to replicate by classical systems.  Alternatively, an entanglement in space can also be viewed as a resource in quantum information in that it allows the ability to perform information tasks that would be impossible or very difficult to do with only classical information.  Two such astonishing applications are quantum communications which can be harnessed for teleportation, and quantum computers which can drastically outperform the best classical supercomputers.   In this thesis our focus is on the theoretical aspect of the field, and we provide one of the first expositions on an analogous quantum effect known as entanglement in time.  It can be viewed as an interdependence of quantum systems across time, which is stronger than could ever exist between classical systems.  We explore this temporal effect within the study of quantum information and its foundations as well as through relativistic quantum information.  An original contribution of this thesis is the design of one of the first quantum information applications of entanglement in time, namely a quantum blockchain.  We describe how the entanglement in time provides the quantum advantage over a classical blockchain.  Furthermore, the information encoding procedure of this quantum blockchain can be interpreted as non-classically influencing the past, and hence the system can be viewed as a `quantum time machine.'</p>


2021 ◽  
Author(s):  
◽  
Del Rajan

<p>This thesis is in the field of quantum information science, which is an area that reconceptualizes quantum physics in terms of information.  Central to this area is the quantum effect of entanglement in space.  It is an interdependence among two or more spatially separated quantum systems that would be impossible to replicate by classical systems.  Alternatively, an entanglement in space can also be viewed as a resource in quantum information in that it allows the ability to perform information tasks that would be impossible or very difficult to do with only classical information.  Two such astonishing applications are quantum communications which can be harnessed for teleportation, and quantum computers which can drastically outperform the best classical supercomputers.   In this thesis our focus is on the theoretical aspect of the field, and we provide one of the first expositions on an analogous quantum effect known as entanglement in time.  It can be viewed as an interdependence of quantum systems across time, which is stronger than could ever exist between classical systems.  We explore this temporal effect within the study of quantum information and its foundations as well as through relativistic quantum information.  An original contribution of this thesis is the design of one of the first quantum information applications of entanglement in time, namely a quantum blockchain.  We describe how the entanglement in time provides the quantum advantage over a classical blockchain.  Furthermore, the information encoding procedure of this quantum blockchain can be interpreted as non-classically influencing the past, and hence the system can be viewed as a `quantum time machine.'</p>


2011 ◽  
Vol 20 (14) ◽  
pp. 2853-2859 ◽  
Author(s):  
C. S. UNNIKRISHNAN ◽  
G. T. GILLIES

There are discernible and fundamental differences between clocks, waves and physical states in classical physics. These fundamental concepts find a common expression in the context of quantum physics in gravitational fields; matter and light waves, quantum states and oscillator clocks become quantum synonymous through the Planck–Einstein–de Broglie relations and the equivalence principle. With this insight, gravitational effects on quantum systems can be simply and accurately analyzed. Apart from providing a transparent framework for conceptual and quantitative thinking on matter waves and quantum states in a gravitational field, we address and resolve with clarity the recent controversial discussions on the important issue of the relation and the crucial difference between gravimetery using atom interferometers and the measurement of gravitational time dilation.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 879
Author(s):  
Michael Y. Pei ◽  
Stephen R. Clark

Neural network quantum states (NQS) have been widely applied to spin-1/2 systems, where they have proven to be highly effective. The application to systems with larger on-site dimension, such as spin-1 or bosonic systems, has been explored less and predominantly using spin-1/2 Restricted Boltzmann Machines (RBMs) with a one-hot/unary encoding. Here, we propose a more direct generalization of RBMs for spin-1 that retains the key properties of the standard spin-1/2 RBM, specifically trivial product states representations, labeling freedom for the visible variables and gauge equivalence to the tensor network formulation. To test this new approach, we present variational Monte Carlo (VMC) calculations for the spin-1 anti-ferromagnetic Heisenberg (AFH) model and benchmark it against the one-hot/unary encoded RBM demonstrating that it achieves the same accuracy with substantially fewer variational parameters. Furthermore, we investigate how the hidden unit complexity of NQS depend on the local single-spin basis used. Exploiting the tensor network version of our RBM we construct an analytic NQS representation of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state in the xyz spin-1 basis using only M=2N hidden units, compared to M∼O(N2) required in the Sz basis. Additional VMC calculations provide strong evidence that the AKLT state in fact possesses an exact compact NQS representation in the xyz basis with only M=N hidden units. These insights help to further unravel how to most effectively adapt the NQS framework for more complex quantum systems.


2018 ◽  
Vol 2 (3) ◽  
pp. 111
Author(s):  
Aswindar Adhi Gumilang ◽  
Tri Pitara Mahanggoro ◽  
Qurrotul Aini

The public demand for health service professionalism and transparent financial management made some Puskesmas in Semarang regency changed the status of public health center to BLUD. The implementation of Puskesmas BLUD and non-BLUD requires resources that it can work well in order to meet the expectations of the community. The aim of this study is to know the difference of work motivation and job satisfaction of employees in Puskesmas BLUD and non-BLUD. Method of this research is a comparative descriptive with a quantitative approach. The object of this research are work motivation and job satisfaction of employees in Puskesmas BLUD and non-BLUD Semarang regency. This Research showed that Sig value. (P-value) work motivation variable was 0.019 smaller than α value (0.05). It showed that there was a difference of work motivation of employees in Puskemas BLUD and non-BLUD. Sig value (P-value) variable of job satisfaction was 0.020 smaller than α value (0.05). It showed that there was a difference of job satisfaction of BLUD and non-BLUD. The average of non-BLUD employees motivation were 76.59 smaller than the average of BLUD employees were 78.25. The average of job satisfaction of BLUD employees were 129.20 bigger than the average of non-BLUD employee were 124.26. Job satisfaction of employees in Puskesmas BLUD was higher than non-BLUD employees.


2018 ◽  
pp. 5-29 ◽  
Author(s):  
L. M. Grigoryev ◽  
V. A. Pavlyushina

The phenomenon of economic growth is studied by economists and statisticians in various aspects for a long time. Economic theory is devoted to assessing factors of growth in the tradition of R. Solow, R. Barrow, W. Easterly and others. During the last quarter of the century, however, the institutionalists, namely D. North, D. Wallis, B. Weingast as well as D. Acemoglu and J. Robinson, have shown the complexity of the problem of development on the part of socioeconomic and political institutions. As a result, solving the problem of how economic growth affects inequality between countries has proved extremely difficult. The modern world is very diverse in terms of development level, and the article offers a new approach to the formation of the idea of stylized facts using cluster analysis. The existing statistics allows to estimate on a unified basis the level of GDP production by 174 countries of the world for 1992—2016. The article presents a structured picture of the world: the distribution of countries in seven clusters, different in levels of development. During the period under review, there was a strong per capita GDP growth in PPP in the middle of the distribution, poverty in various countries declined markedly. At the same time, in 1992—2016, the difference increased not only between rich and poor groups of countries, but also between clusters.


Author(s):  
Detlef Liebs

Abstract Four kinds of Romans in the Frankish kingdoms in the 6th to 8th centuries. Roman law texts from Merowingian Gaul make a difference between cives Romani, Latini and dediticii, all considered as Romans. This difference mattered only to slaves who had been freed. The status of Latin and dediticius was hereditary, whereas the descendants of one who had been freed as civis Romanus were free born Romans, who should be classified as a proper, a fourth kind of beeing Roman; it was the standard kind. The difference was important in civil law, procedural law and criminal law, especially in wergeld, the sum to be payed for expiation when somebody had been killed: Who had killed a Roman, had to pay different sums according to the status of the killed.


Sign in / Sign up

Export Citation Format

Share Document