Distinguishing quantum operations: LOCC versus separable operators

2016 ◽  
Vol 14 (06) ◽  
pp. 1640028 ◽  
Author(s):  
Indrani Chattopadhyay ◽  
Debasis Sarkar

In this paper, we discuss the issue of distinguishing a pair of quantum operation in general. We use Krause theorem for representing the operations in unitary form. This supports the existence of pair of quantum operations that are not locally distinguishable, but distinguishable in asymptotic sense in some higher dimensional system. The process can even be successful without any use of the entangled initial state.

Author(s):  
Paul Ritchie ◽  
Özkan Karabacak ◽  
Jan Sieber

A classical scenario for tipping is that a dynamical system experiences a slow parameter drift across a fold tipping point, caused by a run-away positive feedback loop. We study what happens if one turns around after one has crossed the threshold. We derive a simple criterion that relates how far the parameter exceeds the tipping threshold maximally and how long the parameter stays above the threshold to avoid tipping in an inverse-square law to observable properties of the dynamical system near the fold. For the case when the dynamical system is subject to stochastic forcing we give an approximation to the probability of tipping if a parameter changing in time reverses near the tipping point. The derived approximations are valid if the parameter change in time is sufficiently slow. We demonstrate for a higher-dimensional system, a model for the Indian summer monsoon, how numerically observed escape from the equilibrium converge to our asymptotic expressions. The inverse-square law between peak of the parameter forcing and the time the parameter spends above a given threshold is also visible in the level curves of equal probability when the system is subject to random disturbances.


2021 ◽  
pp. 2250001
Author(s):  
Ce Wang

Open quantum walks (OQWs) (also known as open quantum random walks) are quantum analogs of classical Markov chains in probability theory, and have potential application in quantum information and quantum computation. Quantum Bernoulli noises (QBNs) are annihilation and creation operators acting on Bernoulli functionals, and can be used as the environment of an open quantum system. In this paper, by using QBNs as the environment, we introduce an OQW on a general higher-dimensional integer lattice. We obtain a quantum channel representation of the walk, which shows that the walk is indeed an OQW. We prove that all the states of the walk are separable provided its initial state is separable. We also prove that, for some initial states, the walk has a limit probability distribution of higher-dimensional Gauss type. Finally, we show links between the walk and a unitary quantum walk recently introduced in terms of QBNs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lizhen Lu ◽  
Kun Ding ◽  
Emanuele Galiffi ◽  
Xikui Ma ◽  
Tianyu Dong ◽  
...  

AbstractSymmetry deepens our insight into a physical system and its interplay with topology enables the discovery of topological phases. Symmetry analysis is conventionally performed either in the physical space of interest, or in the corresponding reciprocal space. Here we borrow the concept of virtual space from transformation optics to demonstrate how a certain class of symmetries can be visualised in a transformed, spectrally related coordinate space, illuminating the underlying topological transitions. By projecting a plasmonic system in a higher-dimensional virtual space onto a lower-dimensional system in real space, we show how transformation optics allows us to construct a topologically non-trivial system by inspecting its modes in the virtual space. Interestingly, we find that the topological invariant can be controlled via the singularities in the conformal mapping, enabling the intuitive engineering of edge states. The confluence of transformation optics and topology here can be generalized to other wave realms beyond photonics.


2000 ◽  
Author(s):  
Lalit Vedula ◽  
N. Sri Namachchivaya

Abstract The dynamics of a shallow arch subjected to small random external and parametric excitation is invegistated in this work. We develop rigorous methods to replace, in some limiting regime, the original higher dimensional system of equations by a simpler, constructive and rational approximation – a low-dimensional model of the dynamical system. To this end, we study the equations as a random perturbation of a two-dimensional Hamiltonian system. We achieve the model-reduction through stochastic averaging and the reduced Markov process takes its values on a graph with certain glueing conditions at the vertex of the graph. Examination of the reduced Markov process on the graph yields many important results such as mean exit time, stationary probability density function.


Automatica ◽  
2010 ◽  
Vol 46 (10) ◽  
pp. 1616-1625 ◽  
Author(s):  
Karim Ramdani ◽  
Marius Tucsnak ◽  
George Weiss

2005 ◽  
Vol 03 (supp01) ◽  
pp. 87-95
Author(s):  
KURT JACOBS

To transmit classical information using a quantum system, the sender prepares the system in one of a set of possible states and sends it to the receiver. The receiver then makes a measurement on the system to obtain information about the senders choice of state. The amount of information which is accessible to the receiver depends upon the encoding and the measurement. Here we derive a bound on this information which generalizes the bound derived by Schumacher, Westmoreland and Wootters [Schumacher, Westmoreland and Wootters, Phys. Rev. Lett. 76, 3452 (1996)] to include inefficient measurements, and thus all quantum operations. This also allows us to obtain a generalization of a bound derived by Hall [Hall, Phys. Rev. A 55, 100 (1997)], and to show that the average reduction in the von Neumann entropy which accompanies a measurement is concave in the initial state, for all quantum operations.


2003 ◽  
Vol 01 (01) ◽  
pp. 135-152 ◽  
Author(s):  
ARUN K. PATI

Mixed states typically arise when quantum systems interact with the outside world. Evolution of open quantum systems in general are described by quantum operations which are represented by completely positive maps. We elucidate the notion of geometric phase for a quantum system described by a mixed state undergoing unitary evolution and non-unitary evolutions. We discuss parallel transport condition for mixed states both in the case of unitary maps and completely positive maps. We find that the relative phase shift of a system not only depends on the state of the system, but also depends on the initial state of the ancilla with which it might have interacted in the past. The geometric phase change during a sequence of quantum operations is shown to be non-additive in nature. This property can attribute a "memory" to a quantum channel. We explore these ideas and illustrate them with simple examples.


1998 ◽  
Vol 08 (07) ◽  
pp. 1575-1584 ◽  
Author(s):  
M. S. Baptista

A low-sized chaotic trajectory is used to compute epsilon-bounded orbit correction perturbations in order to rapidly target a trajectory from the vicinity of a starting point to a target. An algorithm that allows fast computation of a set of perturbations to be applied is presented, and its performance is tested in a higher-dimensional system, the kicked double rotor.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jhih-Yuan Kao ◽  
Chung-Hsien Chou

Abstract Quantum operations are the fundamental transformations on quantum states. In this work, we study the relation between entangling capacities of operations, geometry of operations, and positive partial transpose (PPT) states, which are an important class of states in quantum information. We show a method to calculate bounds for entangling capacity, the amount of entanglement that can be produced by a quantum operation, in terms of negativity, a measure of entanglement. The bounds of entangling capacity are found to be associated with how non-PPT (PPT preserving) an operation is. A length that quantifies both entangling capacity/entanglement and PPT-ness of an operation or state can be defined, establishing a geometry characterized by PPT-ness. The distance derived from the length bounds the relative entangling capability, endowing the geometry with more physical significance. We also demonstrate the equivalence of PPT-ness and separability for unitary operations.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 759
Author(s):  
Umar Batsari Yusuf ◽  
Poom Kumam ◽  
Sikarin Yoo-Kong

In this paper, we consider an order-preserving mapping T on a complete partial b-metric space satisfying some contractive condition. We were able to show the existence and uniqueness of the fixed point of T. In the application aspect, the fidelity of quantum states was used to establish the existence of a fixed quantum state associated to an order-preserving quantum operation. The method we presented is an alternative in showing the existence of a fixed quantum state associated to quantum operations. Our method does not capitalise on the commutativity of the quantum effects with the fixed quantum state(s) (Luders’s compatibility criteria). The Luders’s compatibility criteria in higher finite dimensional spaces is rather difficult to check for any prospective fixed quantum state. Some part of our results cover the famous contractive fixed point results of Banach, Kannan and Chatterjea.


Sign in / Sign up

Export Citation Format

Share Document