Numerical Study on High Velocity Impact Welding Using a Modified SPH Method

2018 ◽  
Vol 16 (02) ◽  
pp. 1846001 ◽  
Author(s):  
Z. L. Zhang ◽  
T. Ma ◽  
M. B. Liu ◽  
D. Feng

High velocity impact welding (HVIW) involves processes like the impact of metal structures and strong fluid-structure interactions with complex phenomena such as interfacial waves and jet generation. It is very difficult to model the HVIW process with typical physics well captured due to the large deformation and moving interfaces, while the associated mechanisms inherent in HVIW are also not well understood. In this paper, the HVIW process is simulated using a modified smoothed particle hydrodynamics (SPH) model, in which the kernel gradient correction is used to improve computational accuracy and an artificial stress term is used to ease stress instability during the welding process. The mechanisms in HVIW are investigated, and typical phenomena including the wavy interface, jet formation, interfacial temperature and pressure distribution are captured. It is demonstrated that with proper impact welding velocity and initial welding angle, the modified SPH method can well reproduce the morphology evolution of the welding interface from straight to wavy and further to wavy interface with vortex shedding. Based on comprehensive numerical data from SPH simulations, the weldability windows for the HVIW are obtained and are compared with experimental and theoretical results. Welding limits for HVIW are also discussed in detail.

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1323 ◽  
Author(s):  
Yulia Yu. Émurlaeva ◽  
Ivan A. Bataev ◽  
Qiang Zhou ◽  
Daria V. Lazurenko ◽  
Ivan V. Ivanov ◽  
...  

A welding window is one of the key concepts used to select optimal regimes for high-velocity impact welding. In a number of recent studies, the method of smoothed particle hydrodynamics (SPH) was used to find the welding window. In this paper, an attempt is made to compare the results of SPH simulation and classical approaches to find the boundaries of a welding window. The experimental data on the welding of 6061-T6 alloy obtained by Wittman were used to verify the simulation results. Numerical simulation of high-velocity impact accompanied by deformation and heating was carried out by the SPH method in Ansys Autodyn software. To analyze the cooling process, the heat equation was solved using the finite difference method. Numerical simulation reproduced most of the explosion welding phenomena, in particular, the formation of waves, vortices, and jets. The left, right, and lower boundaries found using numerical simulations were in good agreement with those found using Wittman’s and Deribas’s approaches. At the same time, significant differences were found in the position of the upper limit. The results of this study improve understanding of the mechanism of joint formation during high-velocity impact welding.


2021 ◽  
pp. 152808372199090
Author(s):  
Azizolrahman Amirian ◽  
Hossein Rahmani ◽  
Hossein Moeinkhah

In this paper, the high velocity impact (HVI) behavior of epoxy-based Kevlar-Basalt hybrid composites was studied experimentally and numerically. The composite specimens were manually placed in nine layers classified into six types of stacking sequences: non-hybrid, sandwich hybrid, and intercalated hybrid. The impact tests were conducted by using a ballistic apparatus at three different energy levels: 150 J, 200 J, and 250 J, and the amount of absorbed energy was calculated based on input velocity and residual velocity of the projectile. The results demonstrated that hybridization improves the behavior of composites in high velocity impacts compared to that of specimen that are not hybridized. The absorption of sandwich hybrids on average increased 23.25% and 11.3% compared to pure Basalt and Kevlar, respectively. Moreover, the intercalated hybrids showed an efficiency of about 35.6% and 21.76% better than that of pure Basalt and Kevlar, respectively, in absorbing energy. The same energy absorption pattern was observed in numerical simulation performed in ABAQUS/Explicit. Also, the highest amount of energy absorption and the lowest residual velocity as well as damage occurred when Kevlar was attacked by the projectile and the layers were intercalated.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 144 ◽  
Author(s):  
Huimin Wang ◽  
Yuliang Wang

High-velocity impact welding is a kind of solid-state welding process that is one of the solutions for the joining of dissimilar materials that avoids intermetallics. Five main methods have been developed to date. These are gas gun welding (GGW), explosive welding (EXW), magnetic pulse welding (MPW), vaporizing foil actuator welding (VFAW), and laser impact welding (LIW). They all share a similar welding mechanism, but they also have different energy sources and different applications. This review mainly focuses on research related to the experimental setups of various welding methods, jet phenomenon, welding interface characteristics, and welding parameters. The introduction states the importance of high-velocity impact welding in the joining of dissimilar materials. The review of experimental setups provides the current situation and limitations of various welding processes. Jet phenomenon, welding interface characteristics, and welding parameters are all related to the welding mechanism. The conclusion and future work are summarized.


2001 ◽  
Author(s):  
Wesley J. Cantwell ◽  
Graham Wade ◽  
J. Fernando Guillen ◽  
German Reyes-Villanueva ◽  
Norman Jones ◽  
...  

Abstract The impact resistance of a range of novel fiber metal laminates based on polypropylene, polyamide and polyetherimide matrices has been investigated. Initial attention focused on optimizing the interface between the composite and aluminum alloy constituents. Here, it was shown that composite-metal adhesion was excellent in all systems examined. In addition, tests at crosshead displacement rates up to 3 m/s indicated that the interfacial fracture energies remained high under dynamic loading conditions. High velocity impact tests on a series of 3/2 laminates (3 layers of aluminum/2 layers of composite) highlighted the outstanding impact resistance of a number of these systems. The glass fiber reinforced polypropylene system offered a particularly high impact resistance exhibiting a perforation energy of approximately 160 Joules. Here, failure mechanisms such as extensive plastic drawing in the aluminum layers and fiber fracture in the composite plies were found to contribute to the excellent energy-absorbing characteristics of these systems.


2020 ◽  
pp. 089270572097617
Author(s):  
B Yelamanchi ◽  
E MacDonald ◽  
NG Gonzalez-Canche ◽  
JG Carrillo ◽  
P Cortes

Fiber Metal Laminates (FML) are structures that contain a sequential arrangement of metal and composite materials, which are of great interest to the aerospace sector due to the superior mechanical performance. The traditional manufacturing process for FML involves considerable investment in manufacturing resources depending on the design complexity of the desired components. To mitigate such limitations, 3D printing enables direct digital manufacturing to create FML with customized configurations. In this work, a preliminary mechanical characterization of additively-manufacturing-enabled FML has been investigated. A series of continuous glass fiber-reinforced composites were printed with a Markforged system and placed between layers of aluminum alloy to manufacture hybrid laminate structures. The laminates were subjected to tensile, interfacial fracture toughness, and both low-velocity and high-velocity impact tests. The results showed that the FMLs appear to have a good degree of adhesion at the metal-composite interface, although a limited intralaminar performance was recorded. It was also observed that the low and high-velocity impact performance of the FMLs was improved by 9–13% relative to that of the constituent elements. The impact performance of the FML appeared to be related to the fiber fracture, out of plane perforation and interfacial delamination within the laminates. The present study can provide an initial research foundation for considering 3D printing in the production of hybrid laminates for static and dynamic applications.


2010 ◽  
Vol 39 (12) ◽  
pp. 2536-2543 ◽  
Author(s):  
Ning Zhang ◽  
Yaowu Shi ◽  
Fu Guo ◽  
Fuqian Yang

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1510-1517
Author(s):  
QINGMING ZHANG ◽  
FENGLEI HUANG ◽  
LI CHEN ◽  
LIMING HAN ◽  
JINZHU LI

In this paper, experimental investigation and theoretical analysis are carried out in an attempt to study the response of SiC ceramic matrix composite reinforced with three dimensional braided fabric(3 D C/SiC ) under high velocity impact. The results show that 3 D C/SiC composite will be turned into comminution if the pressure of the impact point resulted from the projectile impacting 3 D C/SiC composite sample is larger than 780Mpa. Based on the analysis of the mechanism of composite comminution, a theoretical model has been developed.


Sign in / Sign up

Export Citation Format

Share Document