scholarly journals DARK ENERGY MODELS TOWARD OBSERVATIONAL TESTS AND DATA

2007 ◽  
Vol 04 (01) ◽  
pp. 53-78 ◽  
Author(s):  
SALVATORE CAPOZZIELLO

A huge amount of good quality astrophysical data converges towards the picture of a spatially flat universe undergoing the today observed phase of accelerated expansion. This new observational trend is commonly addressed as Precision Cosmology. Despite of the quality of astrophysical surveys, the nature of dark energy dominating the matter-energy content of the universe is still unknown and a lot of different scenarios are viable candidates to explain cosmic acceleration. Methods to test these cosmological models are based on distance measurements and lookback time toward astronomical objects used as standard candles. I discuss the characterizing parameters and constraints of three different classes of dark energy models pointing out the related degeneracy problem which is the signal that more data at low (z ~ 0 ÷ 1), medium (1 < z < 10) and high (10 < z < 1000) redshift are needed to definitively select realistic models.

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


2011 ◽  
Vol 01 ◽  
pp. 228-233
Author(s):  
YUNGUI GONG

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models. Remarkably, the growth rate can be approximated as Ωγ. We discuss the dependence of the growth index γ on the dimensionless matter energy density Ω for a more accurate approximation of the growth factor. The observational data are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the ΛCDM model, we find that [Formula: see text]. For the Dvali-Gabadadze-Porrati model, we find that [Formula: see text].


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1174
Author(s):  
Muhammad Umair Shahzad ◽  
Ayesha Iqbal ◽  
Abdul Jawad

In this paper, we consider the flat FRW spacetime filled with interacting dark energy and dark matter in fractal universe. We work with the three models of dark energy named as Tsallis, Renyi and Sharma–Mittal. We investigate different cosmological implications such as equation of state parameter, squared speed of sound, deceleration parameter, statefinder parameters, ω e f f - ω e f f ´ (where prime indicates the derivative with respect to ln a , and a is cosmic scale factor) plane and Om diagnostic. We explore these parameters graphically to study the evolving universe. We compare the consistency of dark energy models with the accelerating universe observational data. All three models are stable in fractal universe and support accelerated expansion of the universe.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250046 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

In this paper, we investigate the statefinder, the deceleration and equation of state parameters when universe is composed of generalized holographic dark energy or generalized Ricci dark energy for Bianchi I universe model. These parameters are found for both interacting as well as noninteracting scenarios of generalized holographic or generalized Ricci dark energy with dark matter and generalized Chaplygin gas. We explore these parameters graphically for different situations. It is concluded that these models represent accelerated expansion of the universe.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250100 ◽  
Author(s):  
A. KHODAM-MOHAMMADI ◽  
M. MALEKJANI ◽  
M. MONSHIZADEH

In this work, we reconstruct the f(R) modified gravity for different ghost and generalized-ghost dark energy (DE) models in FRW flat universe, which describes the accelerated expansion of the universe. The equation of state and deceleration parameter of reconstructed f(R) gravity have been calculated. The equation of state and deceleration parameter of reconstructed f(R)-ghost/generalized-ghost DE, have been calculated. We show that the corresponding f(R) gravity of ghost/generalized-ghost DE model can behave like phantom or quintessence. Also the transition between deceleration to acceleration regime is indicated by deceleration parameter diagram for reconstructed f(R) generalized-ghost DE model.


2013 ◽  
Vol 22 (14) ◽  
pp. 1330027 ◽  
Author(s):  
DAVID POLARSKI

Dark energy models account for the present accelerated expansion of the universe. Many models were suggested and investigated, based on very different physical principles. We will review some representative models emphasizing similarities and differences between these various approaches.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750157
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev ◽  
Burkhard Kleihaus ◽  
Jutta Kunz

The propagation of weak gravitational waves on the background of dark energy is studied. The consideration is carried out within the framework of an approximate approach where the cosmological scale factor is expanded as a power series for relatively small values of the redshift corresponding to the epoch of the present accelerated expansion of the universe. For several different dark energy models, we obtain dispersion relations for gravitational waves which can be used to estimate the viability of every specific model by comparing with observational data.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950031
Author(s):  
Rui-Hui Lin ◽  
Qiang Wen ◽  
Xiang-Hua Zhai ◽  
Xin-Zhou Li

The currently accelerated expansion of our universe is unarguably one of the most intriguing problems in today’s physics research. Two realistic nonminimal torsion–matter coupling [Formula: see text] models have been established and studied in our previous papers [C. J. Feng, F. F. Ge, X. Z. Li, R. H. Lin and X. H. Zhai, Phys. Rev. D 92 (2015) 104038; R. H. Lin, X. H. Zhai and X. Z. Li, Eur. Phys. J. C 77 (2017) 504] aiming to explain this “dark energy” problem. In this paper, we study the generalized power-law torsion–matter coupling [Formula: see text] model. Dynamical system analysis shows that the three expansion phases of the universe, i.e. the radiation-dominated era, the matter-dominated era and the dark energy-dominated era, can all be reproduced in this generalized model. By using the statefinder and [Formula: see text] diagnostics, we find that the different cases of the model can be distinguished from each other and from other dark energy models such as the two models in our previous papers, [Formula: see text]CDM, quintessence and Chaplygin gas. Furthermore, the analyses also show that all kinds of generalized power-law torsion–matter coupling model are able to cross the [Formula: see text] divide from below to above, which is a realization of quintom scenario. The decrease of the energy density resulting from the crossing of [Formula: see text] will make the catastrophic fate of the universe avoided and a de Sitter expansion fate in the future will be approached.


2013 ◽  
Vol 91 (1) ◽  
pp. 54-59 ◽  
Author(s):  
F. Adabi ◽  
K. Karami ◽  
M. Mousivand

We investigate the correspondence between the ghost and Chaplygin scalar field dark energy models in the framework of Einstein gravity. We consider a spatially nonflat Friedmann–Robertson–Walker universe containing dark energy that interacts with dark matter. We reconstruct the potential and the dynamics for the Chaplygin scalar field model according to the evolutionary behavior of ghost dark energy, which can describe the phantomic accelerated expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document