scholarly journals Reconstructing f(R) gravity from a Chaplygin scalar field in de Sitter spacetimes

2018 ◽  
Vol 15 (02) ◽  
pp. 1850027 ◽  
Author(s):  
Heba Sami ◽  
Neo Namane ◽  
Joseph Ntahompagaze ◽  
Maye Elmardi ◽  
Amare Abebe

We present a reconstruction technique for models of [Formula: see text] gravity from the Chaplygin scalar field in flat de Sitter spacetimes. Exploiting the equivalence between [Formula: see text] gravity and scalar–tensor (ST) theories, and treating the Chaplygin gas (CG) as a scalar field model in a universe without conventional matter forms, the Lagrangian densities for the [Formula: see text] action are derived. Exact [Formula: see text] models and corresponding scalar field potentials are obtained for asymptotically de Sitter spacetimes in early and late cosmological expansion histories. It is shown that the reconstructed [Formula: see text] models all have General Relativity (GR) as a limiting solution.

2019 ◽  
Vol 97 (8) ◽  
pp. 880-894
Author(s):  
M. Zubair ◽  
Farzana Kousar ◽  
Saira Waheed

In this paper, we explore the nature of scalar field potential in [Formula: see text] gravity using a well-motivated reconstruction scheme for flat Friedmann–Robertson–Walker (FRW) geometry. The beauty of this scheme lies in the assumption that the Hubble parameter can be expressed in terms of scalar field and vice versa. Firstly, we develop field equations in this gravity and present some general explicit forms of scalar field potential via this technique. In the first case, we take the de Sitter universe model and construct some field potentials by taking different cases for the coupling function. In the second case, we derive some field potentials using the power law model in the presence of different matter sources like barotropic fluid, cosmological constant, and Chaplygin gas for some coupling functions. From graphical analysis, it is concluded that using some specific values of the involved parameters, the reconstructed scalar field potentials are cosmologically viable in both cases.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850087 ◽  
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Warm generalized Chaplygin gas inflation is being studied by assuming power-law plateau and inverse symmetric potentials with standard scalar field model. We consider strong dissipative regime with generalized dissipative coefficient and extract the various inflationary parameters such as scalar power spectrum, spectral index, tensor-to-scalar ratio and running of spectral index. It is found that both inflationary potentials favor the strong dissipative regime. Also, we construct the [Formula: see text]–[Formula: see text] (running of spectral index versus spectral index) and [Formula: see text]–[Formula: see text] (tensor-to-scalar ratio versus spectral index) planes and found that the trajectories of these planes favor WMAP 7 [Formula: see text] WMAP 9 and latest Planck data.


2004 ◽  
Vol 19 (10) ◽  
pp. 761-768 ◽  
Author(s):  
LUIS P. CHIMENTO ◽  
ALEXANDER FEINSTEIN

We study spatially flat isotropic universes driven by k-essence. It is shown that Friedmann and k-field equations may be analytically integrated for arbitrary k-field potentials during evolution with a constant baryotropic index. It follows that there is an infinite number of dynamically different k-theories with equivalent kinematics of the gravitational field. We show that there is a large "window" of stable solutions, and that the dust-like behavior separates stable from unstable expansion. Restricting to the family of power law solutions, it is argued that the linear scalar field model, with constant function F, is isomorphic to a model with divergent speed of sound and this makes them less suitable for cosmological modeling than the nonlinear k-field solutions we find in this paper.


2016 ◽  
Vol 13 (10) ◽  
pp. 1650120 ◽  
Author(s):  
Maye Elmardi ◽  
Amare Abebe ◽  
Abiy Tekola

We explore exact [Formula: see text] gravity solutions that mimic Chaplygin-gas inspired [Formula: see text]CDM cosmology. Starting with the original, generalized and modified Chaplygin-gas (MCG) equations of state (EoS), we reconstruct the forms of [Formula: see text] Lagrangians. The resulting solutions are generally quadratic in the Ricci scalar, but have appropriate [Formula: see text]CDM solutions in limiting cases. These solutions, given appropriate initial conditions, can be potential candidates for scalar field-driven early universe expansion (inflation) and dark energy-driven late-time cosmic acceleration.


Author(s):  
Francesco Bajardi ◽  
Salvatore Capozziello

Abstract We develop the n-dimensional cosmology for $$f(\mathcal {G})$$f(G) gravity, where $$\mathcal {G}$$G is the Gauss–Bonnet topological invariant. Specifically, by the so-called Noether Symmetry Approach, we select $$f(\mathcal {G})\simeq \mathcal {G}^k$$f(G)≃Gk power-law models where k is a real number. In particular, the case $$k = 1/2$$k=1/2 for $$n=4$$n=4 results equivalent to General Relativity showing that we do not need to impose the action $$R+f(\mathcal {G})$$R+f(G) to reproduce the Einstein theory. As a further result, de Sitter solutions are recovered in the case where $$f(\mathcal {G})$$f(G) is non-minimally coupled to a scalar field. This means that issues like inflation and dark energy can be addressed in this framework. Finally, we develop the Hamiltonian formalism for the related minisuperspace and discuss the quantum cosmology for this model.


1999 ◽  
Vol 08 (06) ◽  
pp. 725-729 ◽  
Author(s):  
L. C. GARCIA DE ANDRADE

An inflationary de Sitter solution of Teleparallel Equivalent of General Relativity (TERG) is obtained. In this model Cartan torsion is shown to be a cosmological relic in the sense that it decays from earlier epochs of the Universe until extremely small values at the present epoch. This would be the reason why it is very difficult to measure cosmological torsion at the present epoch and only extremely small relic torsion would be left. Torsion plays a role similar to the inflaton field in its interaction with the scalar field. The torsion mass is determined from the teleparallel action in terms of the Planck mass. The value of the torsion mass is of the order of Planck mass. An upper limit for torsion of 10-18s-1 is obtained for the de Sitter phase. By considering the Friedmann phase it is possible to show that torsion induces an oscillation on the Universe.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2021 ◽  
Vol 133 (4) ◽  
Author(s):  
K. Sośnica ◽  
G. Bury ◽  
R. Zajdel ◽  
K. Kazmierski ◽  
J. Ventura-Traveset ◽  
...  

AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.


2005 ◽  
Vol 72 (2) ◽  
Author(s):  
Anne-Marie Barlow ◽  
Daniel Doherty ◽  
Elizabeth Winstanley
Keyword(s):  

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


Sign in / Sign up

Export Citation Format

Share Document