One-pot synthesis of manganese porphyrin covalently functionalized graphene oxide for enhanced photocatalytic hydrogen evolution

2017 ◽  
Vol 21 (03) ◽  
pp. 179-188 ◽  
Author(s):  
Xia Li ◽  
Kezhen Li ◽  
Dandan Wang ◽  
Jie Huang ◽  
Chunyong Zhang ◽  
...  

In this paper, graphene oxide (GO) sheets covalently functionalized with (5,10,15,20-tetraphenyl) porphinato manganese(III) (MnTPP) has been successfully synthesized and tested as a photocatalyst for hydrogen evolution from water under UV-vis light irradiation. The obtained sample was systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis, Fourier transform infrared (FTIR), and Raman spectroscopy. The results show that the MnTPP moiety has been successfully grafted on the graphene oxide surface to form MnTPP modified GO (GO-MnTPP). The fluorescence quenching and photocurrent enhancement of GO-MnTPP confirm that the rapid electrons transfer from photoexcited the MnTPP moiety to the GO sheets. The platinized GO-MnTPP exhibits enhanced photocatalytic activity for water reduction to produce hydrogen. Moreover, with the assistance of polyvinyl pyrrolidone (PVP), the photocatalytic activity is further improved because of aggregation prevention of the GO-MnTPP nanocomposite. This study provides a facile method to build porphyrin-graphene-based photocatalysts for solar energy conversion.

2019 ◽  
Vol 814 ◽  
pp. 112-117
Author(s):  
Kun Yan Wang

The graphene oxide (GO) was prepared by the Hummers method, and then functionalized by 3-glycidoxypropyltrimethoxysilane. Functionalized graphene oxide (FGO) was characterized by using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG). The results show that 3-glycidoxypropyltrimethoxysilane reacted with hydroxyl group of graphene oxide. The FGO have a sheet-like structure with wrinkles. The shifts of XRD peaks to low degree for FGO indicate the occurrence of intercalation of 3-glycidoxypropyltrimethoxysilane and as well as increase in the thermal stability.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84573-84586 ◽  
Author(s):  
Mingqiang Liu ◽  
Zhongan Tao ◽  
Huicai Wang ◽  
Fei Zhao ◽  
Qiang Sun

An easy one-pot solvothermal strategy approach has been reported on the preparation of ethylenediamine (EDA) decorated with magnetite/graphene oxide (EDA–Fe3O4/GO) nanocomposites and employed as a recyclable adsorbent for Hg(ii) in aqueous solution.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1180 ◽  
Author(s):  
Elvin Aliyev ◽  
Volkan Filiz ◽  
Muntazim M. Khan ◽  
Young Joo Lee ◽  
Clarissa Abetz ◽  
...  

The purpose of this work is the structural analysis of graphene oxide (GO) and by means of a new structural model to answer the questions arising from the Lerf–Klinowski and the Lee structural models. Surface functional groups of GO layers and the oxidative debris (OD) stacked on them were investigated after OD was extracted. Analysis was performed successfully using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy (SSNMR), standardized Boehm potentiometric titration analysis, elemental analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that graphene oxide layers, as well as oxidative debris contain different functional groups such as phenolic –OH, ketone, lactone, carboxyl, quinone and epoxy. Based on these results, a new structural model for GO layers is proposed, which covers all spectroscopic data and explains the presence of the other oxygen functionalities besides carboxyl, phenolic –OH and epoxy groups.


2018 ◽  
Vol 5 (8) ◽  
pp. 180613 ◽  
Author(s):  
Haijin Liu ◽  
Peiyao Li ◽  
Haokun Bai ◽  
Cuiwei Du ◽  
Dandan Wei ◽  
...  

Anatase TiO 2 with {001} facets is much more active than that with {101} facets, which has been verified via experiments and theoretical calculations. Graphene has garnered much attention since it was initially synthesized, due to its unique properties. In this study, reduced graphene oxide (RGO)/{001} faceted TiO 2 composites were fabricated via a solvothermal method. The composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrophotometry, photoluminescence and Raman analysis. The results revealed that the graphene oxide was reduced during the preparation process of the {001} faceted TiO 2 , and combined with the surface of {001} TiO 2 . The photocatalytic activities of the composites were evaluated through the degradation of basic violet, under both white light ( λ > 390 nm) and visible light ( λ = 420 nm) irradiation. The results indicated that the photocatalytic activities of the {001} faceted TiO 2 were significantly improved following the incorporation of RGO, particularly under visible light irradiation. Theoretical calculations showed that the band structure of the {001} faceted TiO 2 was modified via graphene hybridization, where the separation of photoinduced electron–hole pairs was promoted; thus, the photocatalytic activity was enhanced.


RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72055-72068 ◽  
Author(s):  
Piyali Bhanja ◽  
Sabuj Kanti Das ◽  
Astam K. Patra ◽  
Asim Bhaumik

New functionalized graphene oxide materials IFGO and Cu-IFGO have been synthesized via post-synthetic pathway where IFGO exhibited high CO2 uptake capacity and Cu-IFGO displayed high catalytic activity in one-pot three component C–S coupling reactions.


2020 ◽  
Vol 20 (12) ◽  
pp. 7558-7568
Author(s):  
Fenping Chi ◽  
Pengpeng Chen ◽  
Changjie Mao

Rose Bengal (RB) was used as a functional pigment and poly dimethyl diallyl ammonium chloride was used as a coupling agent to modify Graphene Oxide (GO) in order to enhance the light absorption and ROS generation of GO. GO, RB and the obtained RB-PDDA-GO were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, Raman spectroscopy, UV-visible spectrophotometry, and X-ray photoelectron spectroscopy. The oxidation of hydroquinone to p-benzoquinone was used to evaluate the oxidation ability. Three kinds of reactive oxygen species (O2·-, 1O2 and ·OH) produced by the materials under light irradiation were detected by the ESR method using TEMP (2,2,6,6-tetramethyl-4-piperidine) and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) as capture agents. The results showed that RB-PDDA-GO produced more ROS under light than GO. Antibacterial experiments were carried out with E. coli as the target strain to detect the actual utility of ROS produced by the materials. The results showed that RB-PDDA-GO had a significant sterilization effect.


Sign in / Sign up

Export Citation Format

Share Document