EQUILIBRIUM AND METASTABLE PHASE DIAGRAMS FOR ISLAND SELF-ORGANIZATION IN SELECTIVE AREA EPITAXY

2009 ◽  
Vol 01 (03) ◽  
pp. 501-513
Author(s):  
NOAH D. MACHTAY ◽  
ROBERT V. KUKTA

An energetic model is used to understand the mechanics of Stranski–Krastanow epitaxial systems constrained to grow on a finite area of a substrate. The model is representative of physical systems that include selective area epitaxy and growth on patterned substrate features such as raised mesas and etched pits. By considering only strain energy, isotropic surface energy, wetting layer potential energy and the geometric constraints of the system, equilibrium configurations consisting of a single island, multiple islands or no islands can be obtained depending on the dimensions of the growth area. These results are in contrast to growth on a substrate of infinite dimensions where the minimum energy configuration of systems with deposited volumes beyond the wetting layer transition thickness is a single large island on top of the wetting layer. It is therefore concluded that growth on a finite area can suppress island coarsening and result in minimum energy configurations consisting of multiple self-organized islands of uniform size and shape. Qualitative comparisons are made to experimental results from literature, and are shown to have good agreement.

2010 ◽  
Vol 77 (4) ◽  
Author(s):  
Robert V. Kukta

Energetic arguments are used to understand the mechanics of Stranski–Krastanow epitaxial systems constrained to grow on a finite area of a substrate. Examples include selective area epitaxy and growth on patterned substrate features as raised mesa and etched pits. Accounting only for strain energy, (isotropic) surface energy, wetting layer potential energy, and geometric constraints, a rich behavior is obtained, whereby equilibrium configurations consist of a single island, multiple islands, or no islands, depending on the size of the growth area. It is shown that island formation is completely suppressed in the case of growth on a sufficiently small area. These behaviors are in stark contrast to growth on an indefinitely large area, where the same model suggests that the minimum free energy configuration of systems beyond the wetting layer transition thickness is a single island atop a wetting layer. The constraint of growing on a finite area can suppress island coarsening and produce minimum energy configurations with multiple self-organized islands of uniform size and shape.


1988 ◽  
Vol 24 (17) ◽  
pp. 1117
Author(s):  
D.A. Roberts ◽  
J.P.R. David ◽  
G. Hill ◽  
P.A. Houston ◽  
M.A. Pate ◽  
...  

1993 ◽  
Vol 29 (8) ◽  
pp. 645 ◽  
Author(s):  
X. An ◽  
H. Temkin ◽  
A. Feygenson ◽  
R.A. Hamm ◽  
M.A. Cotta ◽  
...  

2009 ◽  
Vol 1202 ◽  
Author(s):  
Wen Feng ◽  
Vladimir Kuryatkov ◽  
Dana Rosenbladt ◽  
Nenad Stojanovic ◽  
Mahesh Pandikunta ◽  
...  

AbstractWe report selective area epitaxy of InGaN/GaN micron-scale stripes and rings on patterned (0001) AlN/sapphire. The objective is to elevate indium incorporation for achieving blue and green emission on semi-polar crystal facets. In each case, GaN structures were first produced, and the InGaN quantum wells (QWs) were subsequently grown. The pyramidal InGaN/GaN stripe along the <11-20> direction has uniform CL emission at 500 nm on the smooth {1-101} sidewall and at 550 nm on the narrow ridge. In InGaN/GaN triangular rings, the structures reveal smooth inner and outer sidewall facets falling into a single type of {1-101} planes. All these {1-101} sidewall facets demonstrate similar CL spectra which appear to be the superposition of two peaks at positions 500 nm and 460 nm. Spatially matched striations are observed in the CL intensity images and surface morphologies of the {1-101} sidewall facets. InGaN/GaN hexagonal rings are comprised of {11-22} and {21-33} facets on inner sidewalls, and {1-101} facets on outer sidewalls. Distinct CL spectra with peak wavelengths as long as 500 nm are observed for these diverse sidewall facets of the hexagonal rings.


1991 ◽  
Vol 58 (15) ◽  
pp. 1659-1661 ◽  
Author(s):  
H. Liu ◽  
J. C. Roberts ◽  
J. Ramdani ◽  
S. M. Bedair

1996 ◽  
Vol 448 ◽  
Author(s):  
S. H. PARK ◽  
S.-L. FU ◽  
P. K. L. YU ◽  
P. M. ASBECK

AbstractA study of selective area epitaxy (SAE) of GalnP lattice matched to GaAs is presented. The selectively regrown GaInP is used as the emitter of a novel heterojunction bipolar transistor (HBT) device structure. Successful SAE of GalnP on both dark field (mostly covered) and light field (mostly open) SiO2 masks is compared. To characterize the critical regrown heterojunction, diodes and HBTs were fabricated and measured. It is found that a pre-growth pause of either TEGa or PH3 results in forward bias characteristics with low leakage and an ideality factor of ~1.25, indicating low interfacial defect density. Non-self aligned regrown emitter HBTs grown with a dark field mask scheme have been fabricated. Devices with an emitter area of 3x12 μm exhibit small signal current gain up to 80 with an fT and fMAX of 22 GHz and 18 GHz, respectively. To further improve the performance of these devices, a structure with a self-aligned refractory metal base contact and light field regrowth is proposed.


Sign in / Sign up

Export Citation Format

Share Document