Vibrational Analysis of a Single-Layered Nanoporous Graphene Membrane

NANO ◽  
2016 ◽  
Vol 11 (04) ◽  
pp. 1650043 ◽  
Author(s):  
Haw-Long Lee ◽  
Win-Jin Chang

In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with simply supported-free-simply supported-free (SFSF) and clamped-free-free-free (CFFF) boundary conditions. The fundamental frequencies computed for the graphene layers without pores are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphenes with SFSF and CFFF boundary conditions, the frequencies decrease with increasing porosity. When the positions of the pores are symmetric with respect to the center of the graphene, the frequency of the zigzag nanoporous graphene is higher than that of the armchair one. To the best of our knowledge, this is first study investigating the relation between the vibrational behavior and porosity of nanoporous graphene layers, which is essential for tuning the material/structural design and exploring new applications for nanoporous graphenes.

Author(s):  
A. Sakhaee-Pour ◽  
M. T. Ahmadian ◽  
A. Vafai

Molecular structural mechanics approach is implemented to investigate vibrational behavior of single-layered graphene sheets. By using the atomistic modeling, mode shapes and natural frequencies are obtained. Vibration analysis is performed under different chirality and boundary conditions. Numerical results from the finite element technique are applied to develop empirical equations via a statistical multiple nonlinear regression model. With the proposed empirical equations, fundamental frequencies of single-layered graphene sheets under considered boundary conditions can be predicted within 3 percent accuracy.


1997 ◽  
Vol 4 (3) ◽  
pp. 193-198 ◽  
Author(s):  
C.T. Loy ◽  
K.Y. Lam ◽  
C. Shu

The analysis of cylindrical shells using an improved version of the differential quadrature method is presented. The generalized differential quadrature (GDQ) method has computational advantages over the existing differential quadrature method. The GDQ method has been applied in solutions to fluid dynamics and plate problems and has shown superb accuracy, efficiency, convenience, and great potential in solving differential equations. The present article attempts to apply the method to the solutions of cylindrical shell problems. To illustrate the implementation of the GDQ method, the frequencies and fundamental frequencies for simply supported-simply supported, clamped-clamped, and clamped-simply supported boundary conditions are determined. Results obtained are validated by comparing them with those in the literature.


1961 ◽  
Vol 28 (2) ◽  
pp. 288-291 ◽  
Author(s):  
H. D. Conway

The bending by uniform lateral loading, buckling by two-dimensional hydrostatic pressure, and the flexural vibrations of simply supported polygonal plates are investigated. The method of meeting the boundary conditions at discrete points, together with the Marcus membrane analog [1], is found to be very advantageous. Numerical examples include the calculation of the deflections and moments, and buckling loads of triangular square, and hexagonal plates. A special technique is then given, whereby the boundary conditions are exactly satisfied along one edge, and an example of the buckling of an isosceles, right-angled triangle plate is analyzed. Finally, the frequency equation for the flexural vibrations of simply supported polygonal plates is shown to be the same as that for buckling under hydrostatic pressure, and numerical results can be written by analogy. All numerical results agree well with the exact solutions, where the latter are known.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


Author(s):  
L. T. Lee ◽  
W. F. Pon

Abstract Natural frequencies of parallelogrammic plates are obtained by employing a set of beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials are generalted by using a Gram-Schmidt process, after the first member is constructed so as to satisfy all the boundary conditions of the corresponding beam problems accompanying the plate problems. The strain energy functional and kinetic energy functionals are transformed from Cartesian coordinate system to a skew coordinate system. The natural frequencies obtained by using the orthogonal polynomial functions are compared with those obtained by other methods with all four edges clamped boundary conditions and greet agreements are found between them. The natural frequencies for parallelogrammic plates with other boundary conditions, such as four edges simply supported, clamped-free and simply supported-free, are also obtained. This method is considered as a better and accurate comprehensive treatment for this type of problems.


2021 ◽  
Author(s):  
Mario Guisasola

<p>The Von Mises, Monocontentio and Bicontentio footbridges are three parameterized metal bridge whose main structural characteristics are their variable depth depending on the applied stress and the embedding of abutments. Its use is considered suitable for symmetrical or asymmetrical topographies with slopes or vertical walls on one or both edges. The footbridges include spans spaced apart by 20 to 66 meters, and are between 2 to 4.5 meters wide.</p><p>Its design is based on five basic concepts: integration in the geometry of the environment; continuous search for simplicity; design based on a geometry that emanates from structural behavior; unitary and round forms; and long- lasting details.</p><p>The structural behavior of these prototypes has been compared with three types of constant-depth metal beams: the bridge simply supported, and the bridge embedded on one or both sides.</p><p>The embedding of abutments, and the adoption of a variation of depth adapted to the bending moments diagrams, allow for more efficient and elegant forms which are well-adapted to the boundary conditions.</p>


Author(s):  
G. Patel ◽  
A. N. Nayak ◽  
A. K. L. Srivastava

The present paper reports an extensive study on dynamic instability characteristics of curved panels under linearly varying in-plane periodic loading employing finite element formulation with a quadratic isoparametric eight nodded element. At first, the influences of three types of linearly varying in-plane periodic edge loads (triangular, trapezoidal and uniform loads), three types of curved panels (cylindrical, spherical and hyperbolic) and six boundary conditions on excitation frequency and instability region are investigated. Further, the effects of varied parameters, such as shallowness parameter, span to thickness ratio, aspect ratio, and Poisson’s ratio, on the dynamic instability characteristics of curved panels with clamped–clamped–clamped–clamped (CCCC) and simply supported-free-simply supported-free (SFSF) boundary conditions under triangular load are studied. It is found that the above parameters influence significantly on the excitation frequency, at which the dynamic instability initiates, and the width of dynamic instability region (DIR). In addition, a comparative study is also made to find the influences of the various in-plane periodic loads, such as uniform, triangular, parabolic, patch and concentrated load, on the dynamic instability behavior of cylindrical, spherical and hyperbolic panels. Finally, typical design charts showing DIRs in non-dimensional forms are also developed to obtain the excitation frequency and instability region of various frequently used isotropic clamped spherical panels of any dimension, any type of linearly varying in-plane load and any isotropic material directly from these charts without the use of any commercially available finite element software or any developed complex model.


Author(s):  
Muzammal Hussain ◽  
M Nawaz Naeem ◽  
Aamir Shahzad ◽  
Mao-Gang He ◽  
Siddra Habib

Fundamental natural frequencies of rotating functionally graded cylindrical shells have been calculated through the improved wave propagation approach using three different volume fraction laws. The governing shell equations are obtained from Love’s shell approximations using improved rotating terms and the new equations are obtained in standard eigenvalue problem with wave propagation approach and volume fraction laws. The effects of circumferential wave number, rotating speed, length-to-radius, and thickness-to-radius ratios have been computed with various combinations of axial wave numbers and volume fraction law exponent on the fundamental natural frequencies of nonrotating and rotating functionally graded cylindrical shells using wave propagation approach and volume fraction laws with simply supported edge. In this work, variation of material properties of functionally graded materials is controlled by three volume fraction laws. This process creates a variation in the results of shell frequency. MATLAB programming has been used to determine shell frequencies for traveling mode (backward and forward) rotating motions. New estimations show that the rotating forward and backward simply supported fundamental natural frequencies increases with an increase in circumferential wave number, for Type I and Type II of functionally graded cylindrical shells. The presented results of backward and forward simply supported fundamental natural frequencies corresponding to Law I are higher than Laws II and III for Type I and reverse effects are found for Type II, depending on rotating speed. Our investigations show that the decreasing and increasing behaviors are noted for rotating simply supported fundamental natural frequencies with increasing length-to-radius and thickness-to-radius ratios, respectively. It is found that the fundamental frequencies of the forward waves decrease with the increase in the rotating speed, and the fundamental frequencies of the backward waves increase with the increase in the rotating speed. This investigation has been made with three different volume fraction laws of polynomial (Law I), exponential (Law II), and trigonometric (Law III). The presented numerical results of nonrotating isotropic and rotating functionally graded simply supported are in fair agreement with parts of other earlier numerical results.


1959 ◽  
Vol 26 (3) ◽  
pp. 353-356
Author(s):  
T. C. Yen ◽  
S. Kao

Abstract Vibration problems of beams with time-dependent boundary conditions are solved by the method of Laplace transforms. The problems treated include the simply supported, cantilevered, and fixed beams carrying a single arbitrarily placed mass; two equal masses symmetrically placed on a simply supported or fixed-end beam and a beam carrying a mass at the center and two equal masses at tips, striking a spring.


Sign in / Sign up

Export Citation Format

Share Document