Improved Thermal Conductivities of Epoxy Resins Containing Surface Functionalized BN Nanosheets

NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850133 ◽  
Author(s):  
Ling Weng ◽  
HeBing Wang ◽  
Xiaorui Zhang ◽  
Lizhu Liu ◽  
Hexin Zhang

The hexagonal boron nitride nanosheets (BN) were firstly treated by silane coupling agents 3-aminopropyltriethoxysilane (KH550) and 3-glycidoxypropyl-trimethoxysilane (KH560) to introduce some amino and epoxy (EP) groups on the BN surface. These modified BN nanosheets were incorporated into an EP matrix to prepare BN@KH560/EP composites with excellent thermal conductivity and electrical insulation properties. Results showed that the thermal conductivity of BN@KH560/EP composite with 20[Formula: see text]vol% BN dosage was found to be 0.442[Formula: see text]W/(m[Formula: see text]K), which was 81% higher than that of pure EP resin. Both BN/EP composites treated by KH550 and KH560 showed rather good electrical insulation properties, although the dielectric constant of BN@KH550/EP composites were slightly higher than BN@KH560/EP composites. Moreover, BN@KH560/EP composites also showed better thermal and mechanical properties than that of BN@KH550/EP composites.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1051 ◽  
Author(s):  
Xiu Wang ◽  
Zhihuai Yu ◽  
Liang Jiao ◽  
Huiyang Bian ◽  
Weisheng Yang ◽  
...  

Hexagonal boron nitride (h-BN)-based heat-spreading materials have drawn considerable attention in electronic diaphragm and packaging fields because of their high thermal conductivity and desired electrical insulation properties. However, the traditional approach to fabricate thermally conductive composites usually suffers from low thermal conductivity, and cannot meet the requirement of thermal management. In this work, novel h-BN/cellulose-nano fiber (CNF) composite films with excellent thermal conductivity in through plane and electrical insulation properties are fabricated via an innovative process, i.e., the perfusion of h-BN into porous three dimensional (3D) CNF aerogel skeleton to form the h-BN thermally conductive pathways by filling the CNF aerogel voids. When at an h-BN loading of 9.51 vol %, the thermal conductivity of h-BN/CNF aerogel perfusion composite film is 1.488 W·m−1·K−1 at through plane, an increase by 260.3%. The volume resistivity is 3.83 × 1014 Ω·cm, superior to that of synthetic polymer materials (about 109~1013 Ω·cm). Therefore, the resulting h-BN/CNF film is very promising to replace the traditional synthetic polymer materials for a broad spectrum of applications, including the field of electronics.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4417
Author(s):  
Xue Li ◽  
Ling Weng ◽  
Hebing Wang ◽  
Xiaoming Wang

To promote the construction of the thermal network in the epoxy resin (EP), a certain proportion of silver nanowires (AgNWs) coupled with the hexagonal boron nitride (BN) nanoplates were chosen as fillers to improve the thermal conductivity of EP resin. Before preparing the composites, BN was treated by silane coupling agent 3-aminopropyltriethoxysilane (KH550), and AgNWs was coated by dopamine hydrochloride. The BN/AgNWs/EP composites were prepared after curing, and the thermal conductivity and dielectric properties of the composites was tested. Results showed that the AgNWs and BN were uniformly dispersed in epoxy resin. It synergistically built a thermal network and greatly increased the thermal conductivity of the composites, which increased 9% after adding AgNWs. Moreover, the electrical property test showed that the addition of AgNWs had little effect on the dielectric constant and dielectric loss of the composites, indicating a rather good electrical insulation of the composites.


2017 ◽  
Vol 54 (2) ◽  
pp. 341-344
Author(s):  
Anda Ionelia Mihai (Voicu) ◽  
Sorina Alexandra Garea ◽  
Eugeniu Vasile ◽  
Cristina Lavinia Nistor ◽  
Horia Iovu

The goal of this paper was to study the modification of porous clay heterostructures (PCHs) with various silane coupling agents. Two commercial coupling agents (3-aminopropyl-triethoxysilane (APTES) and 3-glycidoxypropyl-trimethoxysilane (GPTMS)) with different functional groups (amine and epoxy groups) were used as modifying agents for the PCHs functionalization. The functionalization of PCH with APTES and GPTMS was evaluated by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA), X-Ray Diffractions (XRD) and BET Analysis. FTIR spectra of modified PCHs confirmed the presence of characteristic peaks of silane coupling agents. TGA results highlighted an increase of weight loss for the modified PCHs that was assigned to the degradation of silane coupling agents (APTES and GPTMS) attached to the PCHs. The XRD results showed that the structure of modified PCHs was influenced by the type of the silane coupling agent. The functionalization of PCHs with silane coupling agents was also confirmed by BET analysis. Textural parameters (specific surface area (SBET), total pore volume (Vt )) suggested that the modified PCHs exhibit lower values of SBET and a significant decrease of total pore volume than unmodified PCHs.


2021 ◽  
Vol 22 (1) ◽  
pp. 109-122
Author(s):  
S. Riaz ◽  
M. Ashraf ◽  
T. Hussain ◽  
M. T. Hussain ◽  
A. Younus ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2013
Author(s):  
Zhong Wu ◽  
Jingyun Chen ◽  
Qifeng Li ◽  
Da-Hai Xia ◽  
Yida Deng ◽  
...  

By modifying the bonding of graphene (GR) and Fe3O4, a stable structure of GR-Fe3O4, namely magnetic GR, was obtained. Under the induction of a magnetic field, it can be orientated in an epoxy resin (EP) matrix, thus preparing EP/GR-Fe3O4 composites. The effects of the content of GR and the degree of orientation on the thermal conductivity of the composites were investigated, and the most suitable Fe3O4 load on GR was obtained. When the mass ratio of GR and Fe3O4 was 2:1, the thermal conductivity could be increased by 54.8% compared with that of pure EP. Meanwhile, EP/GR-Fe3O4 composites had a better thermal stability, dynamic thermomechanical properties, and excellent electrical insulation properties, which can meet the requirements of electronic packaging materials.


Author(s):  
Xiaowei Zhang ◽  
Zilong Wang ◽  
Tianhao Li ◽  
Shengjie Zhu ◽  
Dunbo Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document