scholarly journals Constrained regularization for noninvasive glucose sensing using Raman spectroscopy

2015 ◽  
Vol 08 (04) ◽  
pp. 1550022 ◽  
Author(s):  
Wei-Chuan Shih

Multivariate calibration is an important tool for spectroscopic measurement of analyte concentrations. We present a detailed study of a hybrid multivariate calibration technique, constrained regularization (CR), and demonstrate its utility in noninvasive glucose sensing using Raman spectroscopy. Similar to partial least squares (PLS) and principal component regression (PCR), CR builds an implicit model and requires knowledge only of the concentrations of the analyte of interest. Calibration is treated as an inverse problem in which an optimal balance between model complexity and noise rejection is achieved. Prior information is included in the form of a spectroscopic constraint that can be obtained conveniently. When used with an appropriate constraint, CR provides a better calibration model compared to PLS in both numerical and experimental studies.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Luciana Lopes Guimarães ◽  
Letícia Parada Moreira ◽  
Bárbara Faria Lourenço ◽  
Walber Toma ◽  
Renato Amaro Zângaro ◽  
...  

This work employed a quantitative model based on Raman spectroscopy and principal component regression (RS/PCR) to quantify the active ingredient dipyrone (metamizole) in commercially available formulations as an analytical methodology for quality control in the pharmaceutical industry. Raman spectra were collected using a dispersive Raman spectrometer (830 nm, 250 mW excitation, and 20 s exposure time) coupled to a Raman probe. Solutions of dipyrone diluted in water in the range of 80 to 120% of the concentration of commercial formulations (500 mg/mL) were used to develop a calibration model based on PCR to obtain the figures of merit for class I validation from the Brazilian Sanitary Surveillance Agency (ANVISA, RE no. 899/2003). This spectral model was then used to predict the concentration of dipyrone in commercial formulations from distinct brands with 500 mg/mL. A prediction error of 6.5 mg/mL (1.3%) was found for this PCR model using the diluted samples. Commercial formulations had predicted concentrations with a difference below 5.0% compared to the label concentration, indicating the applicability of Raman spectroscopy for quality control in the final product.


1992 ◽  
Vol 46 (11) ◽  
pp. 1685-1694 ◽  
Author(s):  
Tomas Isaksson ◽  
Charles E. Miller ◽  
Tormod Næs

In this work, the abilities of near-infrared diffuse reflectance (NIR) and transmittance (NIT) spectroscopy to noninvasively determine the protein, fat, and water contents of plastic-wrapped homogenized meat are evaluated. One hundred homogenized beef samples, ranging from 1 to 23% fat, wrapped in polyamide/polyethylene laminates, were used. Results of multivariate calibration and prediction for protein, fat, and water contents are presented. The optimal test set prediction errors (root mean square error of prediction, RMSEP), obtained with the use of the principal component regression method with NIR data, were 0.45, 0.29 and 0.50 weight % for protein, fat, and water, respectively, for plastic-wrapped meat (compared to 0.40, 0.28 and 0.45 wt % for unwrapped meat). The optimal prediction errors for the NIT method were 0.31, 0.52 and 0.42 wt % for protein, fat, and water, respectively, for plastic-wrapped meat samples (compared to 0.27, 0.38, and 0.37 wt % for unwrapped meat). We can conclude that the addition of the laminate only slightly reduced the abilities of the NIR and NIT method to predict protein, fat, and water contents in homogenized meat.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Saliha Sahin ◽  
Esra Isik ◽  
Cevdet Demir

The multivariate calibration methods—principal component regression (PCR) and partial least squares (PLSs)—were employed for the prediction of total phenol contents of four Prunella species. High performance liquid chromatography (HPLC) and spectrophotometric approaches were used to determine the total phenol content of the Prunella samples. Several preprocessing techniques such as smoothing, normalization, and column centering were employed to extract the chemically relevant information from the data after alignment with correlation optimized warping (COW). The importance of the preprocessing was investigated by calculating the root mean square error (RMSE) for the calibration set of the total phenol content of Prunella samples. The models developed based on the preprocessed data were able to predict the total phenol content with a precision comparable to that of the reference of the Folin-Ciocalteu method. PLS model seems preferable, because of its predictive and describing abilities and good interpretability of the contribution of compounds to the total phenol content. Multivariate calibration methods were constructed to model the total phenol content of the Prunella samples from the HPLC profiles and indicate peaks responsible for the total phenol content successfully.


2020 ◽  
Vol 88 (3) ◽  
pp. 35
Author(s):  
Endjang Prebawa Tejamukti ◽  
Widiastuti Setyaningsih ◽  
Irnawati ◽  
Budiman Yasir ◽  
Gemini Alam ◽  
...  

Mangosteen, or Garcinia mangostana L., has merged as an emerging fruit to be investigated due to its active compounds, especially xanthone derivatives such as α -mangostin (AM), γ-mangostin (GM), and gartanin (GT). These compounds had been reported to exert some pharmacological activities, such as antioxidant and anti-inflammatory, therefore, the development of an analytical method capable of quantifying these compounds should be investigated. The aim of this study was to determine the correlation between FTIR spectra and HPLC chromatogram, combined with chemometrics for quantitative analysis of ethanolic extract of mangosteen. The ethanolic extract of mangosteen pericarp was prepared using the maceration technique, and the obtained extract was subjected to measurement using instruments of FTIR spectrophotometer at wavenumbers of 4000–650 cm−1 and HPLC, using a PDA detector at 281 nm. The data acquired were subjected to chemometrics analysis of partial least square (PLS) and principal component regression (PCR). The result showed that the wavenumber regions of 3700–2700 cm−1 offered a reliable method for quantitative analysis of GM with coefficient of determination (R2) 0.9573 in calibration and 0.8134 in validation models, along with RMSEC value of 0.0487% and RMSEP value 0.120%. FTIR spectra using the second derivatives at wavenumber 3700–663 cm−1 with coefficient of determination (R2) >0.99 in calibration and validation models, along with the lowest RMSEC value and RMSEP value, were used for quantitative analysis of GT and AM, respectively. It can be concluded that FTIR spectra combined with multivariate are accurate and precise for the analysis of xanthones.


The Analyst ◽  
1994 ◽  
Vol 119 (7) ◽  
pp. 1537-1540 ◽  
Author(s):  
Mercedes Jiménez Arrabal ◽  
Pablo Valiente González ◽  
Concepción Caro Gámez ◽  
Antonio Sánchez Misiego ◽  
Arsenio Muñoz de la Peña

1988 ◽  
Vol 42 (5) ◽  
pp. 865-872 ◽  
Author(s):  
Frederick Cahn ◽  
Senja Compton

The principal component regression (PCR) and partial least-squares (PLS) methods are used to calibrate and validate models for quantitative prediction of the composition of mixtures from FT-IR spectra. An experimental system of two- and three-component mixtures of xylene isomers was sampled with the use of statistical experimental designs. For two-component mixtures, the prediction error of independent validation samples decreased with increasing numbers of design points in the calibration. Four design points were needed to achieve a prediction accuracy of 0.0013 weight fraction. For three-component mixtures, a Scheffé {3,3} simplex lattice design, which has ten design points, achieved an equivalent accuracy of 0.002 weight fraction. There was little difference in performance between PLS and PCR computations. The results demonstrate the application of statistical methodology to the calibration of infrared spectra and show the importance of including an adequate number of samples in the calibration. The F test on the residual spectrum is shown to be a valuable tool for the identification of spurious data.


2015 ◽  
Vol 1113 ◽  
pp. 358-363 ◽  
Author(s):  
Muhammad Zubair Shahid ◽  
Humbul Suleman ◽  
Adulhalim Shah Maulud ◽  
Mohammad Azmi Bustam Khalil ◽  
Zakaria Man

Carbon dioxide separation has gained immense importance since its detrimental effects towards our environment has been realized. Commercially, CO2has been captured by absorption in alkanolamines such as diethanolamine (DEA), since many years. The thermodynamics and kinetics of the process is a key factor towards its efficiency and significantly depends on its qualitative and quantitative speciation. In this work, the analysis of speciation for CO2loaded aqueous DEA has been performed by Raman spectroscopy. Experimentally determined CO2loading data and modified Kent Eisenberg equation was used to quantify the chemical species present. The speciation results were fitted with the respective characteristic Raman peaks of (CO3-, HCO3-, DEACOO-, DEA, DEA+, CO2) by Principal Component Regression (PCR). The fitted results showed good agreement with thermodynamically predicted chemical species.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1563
Author(s):  
Mario Li Vigni ◽  
Caterina Durante ◽  
Sara Michelini ◽  
Marco Nocetti ◽  
Marina Cocchi

Raman spectroscopy, and handheld spectrometers in particular, are gaining increasing attention in food quality control as a fast, portable, non-destructive technique. Furthermore, this technology also allows for measuring the intact sample through the packaging and, with respect to near infrared spectroscopy, it is not affected by the water content of the samples. In this work, we evaluate the potential of the methodology to model, by multivariate data analysis, the authenticity of Parmigiano Reggiano cheese, which is one of the most well-known and appreciated hard cheeses worldwide, with protected denomination of origin (PDO). On the other hand, it is also highly subject to counterfeiting. In particular, it is critical to assess the authenticity of grated cheese, to which, under strictly specified conditions, the PDO is extended. To this aim, it would be highly valuable to develop an authenticity model based on a fast, non-destructive technique. In this work, we present preliminary results obtained by a handheld Raman spectrometer and class-modeling (Soft Independent Modeling of Class Analogy, SIMCA), which are extremely promising, showing sensitivity and specificity of 100% for the test set. Moreover, another salient issue, namely the percentage of rind in grated cheese, was addressed by developing a multivariate calibration model based on Raman spectra. It was possible to obtain a prediction error around 5%, with 18% being the maximum content allowed by the production protocol.


Sign in / Sign up

Export Citation Format

Share Document