Simple fabrication of UV photo-detector based on NiO/ZnO structure grown by hydrothermal process

2018 ◽  
Vol 11 (02) ◽  
pp. 1850045 ◽  
Author(s):  
Shaoying Huang ◽  
Naisen Yu ◽  
Tiyun Wang ◽  
Jinpeng Li

A simple two-step aqueous method was employed to grow NiO nanostructures on ZnO/sapphire at low temperature. The obtained NiO nanostructures were uniformly distributed on the surface of ZnO/sapphire substrates and showed sheet-like structures. Meanwhile, ultraviolet (UV) photodetector based on NiO/ZnO heterojunction was fabricated by a simple way. The obtained UV detector based on the NiO nanosheets/ZnO heterostructure showed excellent UV sensing properties due to the increased surface and local [Formula: see text]-[Formula: see text] junction area. It will facilitate greatly the fabrication of large-scale NiO/ZnO heterostructure with relatively low cost at remarkably low temperature.

2018 ◽  
Vol 18 (12) ◽  
pp. 8399-8402
Author(s):  
Yunfeng Wu ◽  
Naisen Yu ◽  
Haiying Du ◽  
Dongping Liu ◽  
Hongwei Liang ◽  
...  

A simple two-step aqueous method was employed to grow MgO nanostructures on ZnO/sapphire at low temperature. The obtained thin MgO nanostructures were uniformly distributed on the surface of ZnO layer and showed the sheet-like structures. Meanwhile, an ultraviolet (UV) photodetector based on ITO/MgO/ZnO structures was fabricated by simple way. The obtained UV detector showed excellent UV sensing properties. This novel method will greatly facilitate fabrication of large-scale metal-insulator-semiconductor with relatively low cost at remarkably low temperature.


2020 ◽  
Vol 20 (12) ◽  
pp. 7553-7557
Author(s):  
Bang Liu ◽  
Naisen Yu ◽  
Dedi Liu ◽  
Benkang Liu ◽  
Yunfeng Wu ◽  
...  

High performance p-GaN/oxide layer/n-GaN ultraviolet (UV) photodetector was fabricated in this paper. The UV detector composed of n-GaN and p-GaN film with oxide layer which was constructed by directly contacting way. The detector based on GaN p-GaN/oxide layer/n-GaN structure showed high UV response with fast speed. The results indicated that the fabrication of large-scale GaNbased materials was greatly facilitated with relatively low cost contacting method. Furthermore, it offered a new method to obtain UV detector for GaN-based materials with high performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35004-35011 ◽  
Author(s):  
Suling Yang ◽  
Gang Li ◽  
Chen Qu ◽  
Guifang Wang ◽  
Dan Wang

A new kind of ZnO nanoparticle/N-doped reduced graphene oxide nanocomposite (ZnONPs/N-rGO) was synthesized through a low temperature, low-cost and one step hydrothermal process.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050062
Author(s):  
Zhaolei Meng ◽  
Xiaojian He ◽  
Song Han ◽  
Zijian Hu

Carbon materials are generally employed as supercapacitor electrodes due to their low- cost, high-chemical stability and environmental friendliness. However, the design of carbon structures with large surface area and controllable porous structure remains a daunt challenge. In this work, a three-dimensional (3D) hybrid aerogel with different contents of MoS2 nanosheets in 3D graphene aerogel (MoS2-GA) was synthesized through a facial hydrothermal process. The influences of MoS2 content on microstructure and subsequently on electrochemical properties of MoS2-GA are systematically investigated and an optimized mass ratio with MoS2: GA of 1:2 is chosen to achieve high mechanical robustness and outstanding electrochemical performance in the hybrid structure. Due to the large specific surface area, porous structure and continuous charge transfer network, such MoS2-GA electrodes exhibit high specific capacitance, good rate capability and excellent cyclic stability, showing great potential in large-scale and low-cost fabrication of high-performance supercapacitors.


2013 ◽  
Vol 668 ◽  
pp. 335-337
Author(s):  
Wan Ju Zhang ◽  
Fang Wang

Iron oxide (Fe3O4) nanoparticles as one of the most important nanomaterials are suitable for many applications. Monodisperse magnetic Fe3O4 nanoparticles were synthesized by the thermal decomposition of the iron oleate precursor in octadecene (ODE). The iron oleate complex was prepared by reaction between sodium oleic and FeCl3·6H2O at low temperature. The Fe3O4 nanoparticles were transferred from organic solvent into water by amphiphilic copolymer. The aqueous dispersion of Fe3O4 nanoparticles was stable in water and physiological buffers. This method with low cost can be used to prepare large scale of aqueous dispersion of Fe3O4 nanoparticles.


MRS Bulletin ◽  
2002 ◽  
Vol 27 (11) ◽  
pp. 881-886 ◽  
Author(s):  
Shuichi Uchikoga

AbstractThe elimination of conventional peripheral LSI (large-scale integration) drivers is considered essential to the development of future low-cost, energy-efficient, lightweight, and thin displays. System-on-glass (SOG) displays are a type of display with various functional circuits integrated on a glass substrate. Low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) make the integration of circuits possible because they can be assembled into complex, high-current driver circuits. Furthermore, LTPS TFTs are attracting attention for driving organic light-emitting devices (OLEDs). This article introduces present and future LTPS TFT technologies for SOG displays.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Le Thuy Hoa ◽  
Huynh Ngoc Tien ◽  
Seung Hyun Hur

Fabrication of 3D structures composed of 1D n-type ZnO nanorods (NRs) and 2D p-type NiO nanosheets (NSs) by a low-cost, low-temperature, and large-area scalable hydrothermal process and its use in highly sensitive NO2gas sensors were studied. The p-n heterojunctions formed by NiO-ZnO interfaces as well as large area two-dimensional NiO NSs themselves increased the adsorption of NO2. Moreover, the charge transfer between NiO and ZnO enhanced the responsivity and sensitivity of NO2sensing even at a concentration of 1 ppm. The 30-min NiO NS growth on ZnO NRs in the hybrid sensor showed the highest sensitivity due to the formation of optimum p-n heterojunctions between ZnO NRs and NiO NSs for gas adsorption and carrier transport. Low responsivity toward reducing gases was also observed.


2010 ◽  
Vol 97-101 ◽  
pp. 2148-2151
Author(s):  
Yan Liu ◽  
Yong Cai Zhang ◽  
Ming Zhang

TiO2 nanorods with tunable aspect ratios were synthesized directly via heating different molar ratios of Ti and NH4Cl powders in air at 400 °C for 3 h. The resultant products have been characterized by means of X-ray diffraction (XRD), Raman spectra, and field emission scanning electronic microscope (FESEM). The proposed method is of simpleness, low temperature and low cost, which may be suitable for large scale production of multifunctional TiO2 nanomaterials


1997 ◽  
Vol 471 ◽  
Author(s):  
Jun-Ying Zhang ◽  
Ian W. Boyd

ABSTRACTA large-area, high power density, high efficiency, and low cost excimer VUV and UV source, which is capable of producing narrow-band radiation tunable between the near UV (λ=354 nm) and the deep UV (λ=126 nm), is described.This UV source is based on the principle that the radiative decomposition of excimer states created by a dielectric barrier discharge (silent discharge) in a rare gas, such as Ar2* (λ=126 nm), Kr2* (λ=146 nm), Xe2* (λ=172 nm) or molecular rare gas-halide complexes, such as ArCl* (λ=175 nm), KrCl* (λ=222 nm), XeCl* (λ=308 nm). Conversion efficiencies (from input electrical to output optical energy) as high as 22% can be achieved under optimum conditions. This powerful and economical lamp provides a useful UV source for low temperature photon-initiated processes and is an interesting alternative to conventional UV lamps for industrial large-scale low temperature processes. For industrial large-area processing and for the deposition of highly complex structures, these narrow band VUV and UV sources with high photon fluxes have definite advantages. Several applications of these excimer sources are reviewed, including photo-deposition of dielectric and metallic thin films, photo-oxidation of silicon, surface modification, etching of polymer, and photo degradation of pollutants.


Sign in / Sign up

Export Citation Format

Share Document