On-line interval graphs coloring — Modification of the First-Fit algorithm and its performance ratio

Author(s):  
Bartosz Bieganowski

We propose a modification of the First-Fit algorithm in which we forbid the use of the most frequently used color. We provide some lower bound of the performance ratio [Formula: see text] on the family of interval graphs [Formula: see text], where [Formula: see text] denotes the number of used colors by the modified version of the First-Fit algorithm and [Formula: see text] is the number of vertices in the largest complete subgraph in [Formula: see text]. We also compare the modification with the usual First-Fit algorithm on some experimental data.

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 683 ◽  
Author(s):  
Feidl ◽  
Garbellini ◽  
Luna ◽  
Vogg ◽  
Souquet ◽  
...  

Chromatography is widely used in biotherapeutics manufacturing, and the corresponding underlying mechanisms are well understood. To enable process control and automation, spectroscopic techniques are very convenient as on-line sensors, but their application is often limited by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer harvest. A state estimation procedure is developed by combining information coming from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF). A comparison with suitable experimental data shows that this approach allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and increased robustness.


2008 ◽  
Vol 4 (T27A) ◽  
pp. 375-384
Author(s):  
Gillian Nave ◽  
Glenn M. Wahlgren ◽  
Jeffrey R. Fuhr

The references cited in this section are mostly papers on original laboratory research; compilations and data bases are covered in another section. The references, ordered by atomic number and spectrum, are given in parentheses following the spectral notations. References including experimental data on line structure, hyperfine structure (HFS) or isotope structure (IS) are also included.


2002 ◽  
Vol 45 (6) ◽  
pp. 41-49 ◽  
Author(s):  
I. Nopens ◽  
C.A. Biggs ◽  
B. De Clercq ◽  
R. Govoreanu ◽  
B.-M. Wilén ◽  
...  

A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data. This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.


1994 ◽  
Vol 50 (3) ◽  
pp. 113-116 ◽  
Author(s):  
Yair Bartal ◽  
Howard Karloff ◽  
Yuval Rabani
Keyword(s):  

2018 ◽  
Vol 29 (08) ◽  
pp. 1311-1329
Author(s):  
Michał Adamczyk ◽  
Mai Alzamel ◽  
Panagiotis Charalampopoulos ◽  
Jakub Radoszewski

Identifying palindromes in sequences has been an interesting line of research in combinatorics on words and also in computational biology, after the discovery of the relation of palindromes in the DNA sequence with the HIV virus. Efficient algorithms for the factorization of sequences into palindromes and maximal palindromes have been devised in recent years. We extend these studies by allowing gaps in decompositions and errors in palindromes, and also imposing a lower bound to the length of acceptable palindromes. We first present an on-line algorithm for obtaining a palindromic decomposition of a string of length [Formula: see text] with the minimal total gap length in time [Formula: see text] and space [Formula: see text], where [Formula: see text] is the number of allowed gaps in the decomposition. We then consider a decomposition of the string in maximal [Formula: see text]-palindromes (i.e. palindromes with [Formula: see text] errors under the edit or Hamming distance) and [Formula: see text] allowed gaps. We present an algorithm to obtain such a decomposition with the minimal total gap length in time [Formula: see text] and space [Formula: see text]. Finally, we provide an implementation of our algorithms.


2006 ◽  
Vol 526 ◽  
pp. 13-18 ◽  
Author(s):  
H. Perez ◽  
Antonio Vizan Idoipe ◽  
J. Perez ◽  
J. Labarga

Many investigations have been developed related to precision machining with features in the millimetre scale. In this paper different cutting force models for micromilling are analyzed and compared. A new model based on specific cutting force that also considers run-out errors has been developed. The estimated cutting forces obtained with this model had good agreement with the experimental data. Also, the proposed model allows to be implemented within the machine control for the on-line optimization of the micromilling process.


2019 ◽  
Vol 63 (8) ◽  
pp. 1819-1848
Author(s):  
Dariusz Dereniowski ◽  
Dorota Osula

Abstract We consider the following on-line pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few searchers as possible. We require that the strategy is connected and monotone, that is, at each point of the execution the part of the graph that is guaranteed to be free of the fugitive is connected and whenever some node gains a property that it cannot be occupied by the fugitive, the strategy must operate in such a way to keep this property till its end. As a way of modeling two-dimensional shapes, we restrict our attention to networks that are embedded into partial grids: nodes are placed on the plane at integer coordinates and only nodes at distance one can be adjacent. Agents do not have any knowledge about the graph a priori, but they recognize the direction of the incident edge (up, down, left or right). We give an on-line algorithm for the searchers that allows them to compute a connected and monotone strategy that guarantees searching any unknown partial grid with the use of $O(\sqrt {n})$ O ( n ) searchers, where n is the number of nodes in the grid. As for a lower bound, there exist partial grids that require ${\varOmega }(\sqrt {n})$ Ω ( n ) searchers. Moreover, we prove that for each on-line searching algorithm there is a partial grid that forces the algorithm to use ${\varOmega }(\sqrt {n})$ Ω ( n ) searchers but $O(\log n)$ O ( log n ) searchers are sufficient in the off-line scenario. This gives a lower bound on ${\varOmega }(\sqrt {n}/\log n)$ Ω ( n / log n ) in terms of achievable competitive ratio of any on-line algorithm.


Author(s):  
V. V. Anh ◽  
P. D. Tuan

AbstractIn this paper we determine the lower bound on |z| = r < 1 for the functional Re{αp(z) + β zp′(z)/p(z)}, α ≧0, β ≧ 0, over the class Pk (A, B). By means of this result, sharp bounds for |F(z)|, |F',(z)| in the family and the radius of convexity for are obtained. Furthermore, we establish the radius of starlikness of order β, 0 ≦ β < 1, for the functions F(z) = λf(Z) + (1-λ) zf′ (Z), |z| < 1, where ∞ < λ <1, and .


Author(s):  
KATSUSHI INOUE ◽  
ITSUO TAKANAMI

This paper first shows that REC, the family of recognizable picture languages in Giammarresi and Restivo,3 is equal to the family of picture languages accepted by two-dimensional on-line tessellation acceptors in Inoue and Nakamura.5 By using this result, we then solve open problems in Giammarresi and Restivo,3 and show that (i) REC is not closed under complementation, and (ii) REC properly contains the family of picture languages accepted by two-dimensional nondeterministic finite automata even over a one letter alphabet.


2008 ◽  
Vol 606 ◽  
pp. 103-118 ◽  
Author(s):  
Jing Zhe Pan ◽  
Ruo Yu Huang

Predicting the sintering deformation of ceramic powder compacts is very important to manufactures of ceramic components. In theory the finite element method can be used to calculate the sintering deformation. In practice the method has not been used very often by the industry for a very simple reason – it is more expensive to obtain the material data required in a finite element analysis than it is to develop a product through trial and error. A finite element analysis of sintering deformation requires the shear and bulk viscosities of the powder compact. The viscosities are strong functions of temperature, density and grain-size, all of which change dramatically in the sintering process. There are two ways to establish the dependence of the viscosities on the microstructure: (a) by using a material model and (b) by fitting the experimental data. The materials models differ from each other widely and it can be difficult to know which one to use. On the other hand, obtaining fitting functions is very time consuming. To overcome this difficulty, Pan and his co-workers developed a reduced finite element method (Kiani et. al. J. Eur. Ceram. Soc., 2007, 27, 2377-2383; Huang and Pan, J. Eur. Ceram. Soc., available on line, 2008) which does not require the viscosities; rather the densification data (density as function of time) is used to predict sintering deformation. This paper provides an overview of the reduced method and a series of case studies.


Sign in / Sign up

Export Citation Format

Share Document