Impact of Environmental Conditions on Frost Crystal Structure

2020 ◽  
Vol 28 (02) ◽  
pp. 2050014
Author(s):  
Tongxin Zhang ◽  
Dennis L. O’Neal ◽  
Stephen T. McClain

Frost crystal type and distribution were characterized in the initial periods of frost growth on an aluminum surface. Experiments were carried out for a range of wall temperatures from [Formula: see text]C to [Formula: see text]C, air temperatures from [Formula: see text]C to [Formula: see text]C, relative humidities from 15% to 85%, and air velocities from 0.5 to 5.0[Formula: see text]m/s. The results showed that frost crystal type was strongly dependent on the wall temperature and humidity. Changing the air temperature shifted the region of some frost crystal types. Decreasing the air temperature from 22 down to either [Formula: see text]C or [Formula: see text]C led to the decrease of feather crystals but increased the region of scroll crystals. Air velocity had smaller impacts on frost crystal type but had a strong influence on the distance between the crystals, particularly at lower air velocities. The results were compared to prior researchers. The results should provide a better understanding of frost morphology during the early stages of frost growth on metal surfaces.

Author(s):  
Tongxin Zhang ◽  
Dennis L. O’Neal ◽  
Stephen T. McClain

Abstract Experiments were conducted on a cold flat aluminum plate to characterize the variation of frost roughness over both time and location on the surfaces. The testing conditions included air temperatures from 8 to 16 °C, wall temperatures from −20 to −10 °C, relative humidities from 60 to 80%, and air velocities from 0.5 to 2.5 m/s. Each test lasted 2 h. A 3D photogrammetric method was employed to measure the variation in frost root-mean-square height and skewness by location and time. These data were used to develop the equivalent sand-grain roughness for the frost at different locations and time. The experimental results showed that frost roughness varied by location and changed with time. For the environmental conditions in this study, relative humidity and air temperature were the most important factors determining changes in the peak frost roughness. For example, at an air temperature of 12 °C and a surface temperature of −15 °C, the frost roughness peaked at about 40 min for a relative humidity of 80% and 90 min for a relative humidity of 60%. Empirical correlations were provided to describe the relationships between the environmental conditions and the appearance of the peak frost roughness.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 996D-996
Author(s):  
Sung Kyeom Kim ◽  
Duk Jun Yu ◽  
Ro Na Bae ◽  
Hee Jae Lee ◽  
Changhoo Chun

Grafted transplants are widely used for watermelon culture in Korea mainly to reduce the yield and quality losses caused by soil-borne diseases. It is normal practice to cure the grafted transplants under high relative humidity (RH) and low photosynthetic photon flux (PPF) conditions for a few days after grafting to prevent the wilting of the transplants. Transpiration rate (TR) and net photosynthetic rate (NPR), however, could be suppressed under those environmental conditions. In the present study, TR and NPR of the grafted watermelon transplants were compared during graft union formation under 18 environmental conditions combining two air temperatures (20 and 28 °C), three RHs (60%, 80%, and 100%), and three PPF s (0, 100, and 200 μmol·m-2·s-1). Percentages of graft union formation and survival were also evaluated. TR and NPR dramatically decreased just after grafting but slowly recovered 2 to 3 days after grafting at 28 °C. The recovery was clearer at higher PPF and lower RH. On the other hand, the recovery of TR and NPR was not observed in 7 days after grafting at 20 °C. Differences in TR and NPR affected by RH were nonsignificant. Percentage of graft union formation was 98% when air temperature, RH, and PPF were 28 °C, 100%, and 100 μmol·m-2·s-1, respectively, which was the highest among all the treatments. Percentage of survival was over 90% when air temperature was 28 °C and RH was higher than 80% (when vapor pressure deficit was lower than 0.76 kPa). In addition, higher PPF enhanced TR and NPR and promoted rooting and subsequent growth of grafted transplants. Results suggest that the acclimation process for grafted watermelon transplants can be omitted by properly manipulating environmental factors during graft union formation.


2013 ◽  
Vol 9 (4) ◽  
pp. 393-401 ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Shahin Rafiee ◽  
Alireza Keyhani ◽  
Payam Javadikia

AbstractIn this research, the experiment is done by a dryer. It could provide any desired drying air temperature between 20 and 120°C and air relative humidity between 5 and 95% and air velocity between 0.1 and 5.0 m/s with high accuracy, and the drying experiment was conducted at five air temperatures of 40, 50, 60, 70 and 80°C and at three relative humidity 20, 40 and 60% and air velocity of 1.5, 2 and 2.5 m/s to dry Basil leaves. Then with developed Program in MATLAB software and by Genetic Algorithm could find the best Feed-Forward Neural Network (FFNN) structure to model the moisture content of dried Basil in each condition; anyway the result of best network by GA had only one hidden layer with 11 neurons. This network could predict moisture content of dried basil leaves with correlation coefficient of 0.99.


1967 ◽  
Vol 9 (4) ◽  
pp. 453-462 ◽  
Author(s):  
T. E. Bond ◽  
C. F. Kelly ◽  
H. Heitman

Rectal and surface temperatures, and respiration and pulse rates, were obtained for groups of Duroc pigs that were exposed to air temperatures that varied sinusoidally over a 24-hour period. Two groups averaging 37 and 108 kg were exposed to a constant temperature of 21·1°C and then to temperatures that cycled about a mean of 21·1°C (15·6–26·7°C, 10·0–32·2°C, and 4·4–37·8°C). For a third group averaging 53 kg, the minimum was always near 21·1°C, and the maximum air temperature of the cycle was 33·2, 42·5 or 48·8°C.The response of rectal and surface temperatures, and pulse and respiration rates, to the various 24-hour cycling air temperatures are discussed and com-pared with inherent daily fluctuations in these responses that are present even when there is no variation in air temperature.


Author(s):  
Christos N. Markides ◽  
Epaminondas Mastorakos

Axisymmetric plumes of hydrogen, acetylene, or n-heptane were formed by the continuous injection of (pure or nitrogen-diluted) fuel into confined turbulent coflows of hot air. Autoignition and subsequent flame propagation was visualized with an intensified high-speed camera. The resulting phenomena that were observed include the statistically steady “random spots” regime and the “flashback” regime. It was found that with higher velocities and smaller injector diameters, the boundary between random spots and flashback shifted to higher air temperatures. In the random spots regime the autoignition regions moved closer to the injector with increasing air temperature and/or decreasing air velocity. After a localized explosive autoignition event, flames propagated into the unburnt mixture in all directions and eventually extinguished, giving rise to autoignition spots of mean radii of 2–5mm for hydrogen and 6–10mm for the hydrocarbons. The average flame propagation velocity in both the axial and radial directions varied between 0.5 and 1.2 times the laminar burning speed of the stoichiometric mixture, increasing as the autoigniting regions shifted upstream.


2017 ◽  
Vol 52 (5) ◽  
pp. 344-354 ◽  
Author(s):  
Tatiany Carvalho dos Santos ◽  
Richard Stephen Gates ◽  
Ilda de Fátima Ferreira Tinôco ◽  
Sérgio Zolnier ◽  
Fernando da Costa Baêta

Abstract: The objective of this work was to evaluate the combined effects of air temperature and air velocity on the behavior of Japanese quail (Coturnix coturnix japonica). A total of 216 Japanese quail in their initial laying phase were used. Bird behavior was categorized with an ethogram (eat, drink, stop, open wings/shiver, others). The experimental design was a randomized complete block, in a 4x4 factorial arrangement, with four air velocities (0, 1, 2, and 3 m s-1) and air temperatures (17, 23, 29, and 35°C). The behavior “stop” was greater when the birds were subjected to 17°C. At 35°C, a significant reduction (p<0.05) was observed in the behavior “eat” at 0 m s-1, compared with the other velocities. The behaviors of laying quail are similar in the morning and in the afternoon. Quail remain stopped for a longer time under cold stress conditions, at 17°C.


Author(s):  
Christos N. Markides ◽  
Epaminondas Mastorakos

Axisymmetric plumes of hydrogen, acetylene or n-heptane were formed by the continuous injection of (pure or nitrogen-diluted) fuel into turbulent co-flows of hot air. Autoignition and subsequent flame propagation was visualized with a high-speed intensified camera. The resulting phenomena include the statistically steady ‘Random Spots’ and the ‘Flashback’ regimes. It was found that with higher velocities and smaller injector diameters, the boundary between Flashback and Random Spots shifted to higher air temperatures. In the Random Spots regime, the autoignition regions moved closer to the injector with increasing air temperature and/or decreasing air velocity. After a localized explosive autoignition event, flames propagated into the unburnt mixture in all directions and eventually extinguished, giving rise to autoignition ‘spots’ of mean radius 2–5mm for hydrogen and 6–10mm for the hydrocarbons. The average flame propagation velocity in both the axial and radial directions varied between 0.5 and 1.2 times the laminar burning speed of the stoichiometric mixture, increasing as the autoigniting regions shifted upstream.


1989 ◽  
Vol 48 (1) ◽  
pp. 51-65 ◽  
Author(s):  
M. S. Cockram ◽  
T. G. Rowan

ABSTRACTSix groups of eight 2-day-old calves were placed successively in a controlled environment chamber. Three groups were exposed to air temperatures of 10° and 25°C. A liquid diet of skimmed-milk substitute and 4 I/day of drinking (free) water was offered to each calf. Within each group, calves were allocated to either a low (<0·2 m/s) or a high (>3 m/s) air velocity and to either a low (30 g dry matter (DM) per kg M0·75per day) or a high (40 g DM per kg M0·75per day) feeding level. At 8 days of age the apparent digestibilities of DM at air temperatures of 10° and 25°C were 0·77 (s.e. 0·126) and 0·82 (s.e. 0·126) respectively (P > 0·05). The apparent digestibilities of DM were greater at the low feeding level with low air velocity than for either this feeding level with high air velocity or the high feeding level at both air velocities (P< 0·05) between which there was no significant difference (P > 0·05). At 8 days of age there were significant air temperature × air velocity (P< 001) and air velocity × feeding level interactions in the intake of free water (P< 005). There was a significant air temperature × feeding level interaction for total water intake (P< 0·05). Urinary water loss relative to total water intake was significantly greater at the low air velocity than at the high air velocity (P< 0·05).In a further two groups of eight calves given 30 g DM per kg M 75 per day at 8 days of age, the apparent digestibilities of DM at air temperatures of 10° and 25°C were 0·71 (s.e. 0·020) and 0·90 (s.e. 0·013) respectively (P< 0·01). In the same calves given 40 g DM per kg M0·75per day at 20 days of age, the apparent digestibilities of DM at air temperatures of 10° and 25°C were 0·89 (s.e. 0·009) and 0·93 (s.e. 0·011) respectively (P< 0·05). The free and total water intakes, the ratios of (total water intake-faecal water loss): total water intake and the urinary losses of water were significantly greater at the air temperature of 25°C than at 10°C (P< 0·05). Live-weight gains were lower at 10°C than at 25°C (P< 0·01).The results suggested that air temperature, air velocity and feeding level can affect the health and growth of calves less than 4 weeks of age.


2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 292 ◽  
Author(s):  
Ana Oliveira ◽  
António Lopes ◽  
Ezequiel Correia ◽  
Samuel Niza ◽  
Amílcar Soares

Lisbon is a European Mediterranean city, greatly exposed to heatwaves (HW), according to recent trends and climate change prospects. Considering the Atlantic influence, air temperature observations from Lisbon’s mesoscale network are used to investigate the interactions between background weather and the urban thermal signal (UTS) in summer. Days are classified according to the prevailing regional wind direction, and hourly UTS is compared between HW and non-HW conditions. Northern-wind days predominate, revealing greater maximum air temperatures (up to 40 °C) and greater thermal amplitudes (approximately 10 °C), and account for 37 out of 49 HW days; southern-wind days have milder temperatures, and no HWs occur. Results show that the wind direction groups are significantly different. While southern-wind days have minor UTS variations, northern-wind days have a consistent UTS daily cycle: a diurnal urban cooling island (UCI) (often lower than –1.0 °C), a late afternoon peak urban heat island (UHI) (occasionally surpassing 4.0 °C), and a stable nocturnal UHI (1.5 °C median intensity). UHI/UCI intensities are not significantly different between HW and non-HW conditions, although the synoptic influence is noted. Results indicate that, in Lisbon, the UHI intensity does not increase during HW events, although it is significantly affected by wind. As such, local climate change adaptation strategies must be based on scenarios that account for the synergies between potential changes in regional air temperature and wind.


Sign in / Sign up

Export Citation Format

Share Document