PREPARATION AND CHARACTERIZATION OF HYDROXYAPATITE-SILICA COMPOSITE NANOPOWDERS

2012 ◽  
Vol 05 ◽  
pp. 630-637 ◽  
Author(s):  
S.M. LATIFI ◽  
M.H. FATHI ◽  
M.A. GOLOZAR

One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica ( SiO 2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica ( HA - SiO 2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol–gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.

2004 ◽  
Vol 449-452 ◽  
pp. 1121-1124 ◽  
Author(s):  
Do Won Seo ◽  
J.G. Kim ◽  
Yun Hae Kim ◽  
Chin Myung Whang

Bioactive ORMOSILS (organically modified silicate), PDMS-CaO-SiO2-P2O5 with five different P2O5 content (0, 0.01, 0.03, 0.06, 0.09 mol%) have successfully been synthesized by sol-gel process. The hybrids have been prepared with polydimethylsiloxane (PDMS), tetraethoxysilane (TEOS), calcium nitrate tetrahydrate [Ca(NO3)2 4H2O] and triethyl phosphate (TEP) as starting materials and subsequently soaked into the simulated body fluid (SBF) for different period of time and the bioactivity of hybrids was determined by examining the apatite formation on the surface of the specimen by FT-IR, Thin-Film X-ray Diffraction, and Scanning Electron Microscopy (SEM). All of the prepared samples with different P2O5 content showed in vitro bioactivity. It was observed that the increase in P2O5 content up to 0.03 mole % increases the apatite formation compared to P2O5- free hybrids. However, further increase in P2O5 concentration slows down the formation of the apatite layer most probably due to the decrease of pH of SBF by dissolution of a large amount of phosphate ions.


2011 ◽  
Vol 694 ◽  
pp. 128-132 ◽  
Author(s):  
Erlani Pusparini ◽  
Iis Sopyan ◽  
Mohd. Hamdi ◽  
Singh Ramesh

The nanocrystalline HA powders were produced through sol-gel method which employed calcium nitrate tetrahydrate [Ca(NO3)2.4H2O] and diammonium hydrogen phosphate [(NH4)2HPO4] as calcium and phosphorous precursors. Sodium ion (Na+) is one of the trace elements found in biological apatite and believed to have important effect in its performance. The concentrations of sodium dopant were varied from 0 mol% until 15 mol% by using sodium nitrate (NaNO3) as the source of dopant. Characterization of nanopowders was investigated by using X-ray diffraction (XRD), Fourier transform infra red (FTIR) and Transmission Electron Microscope (TEM). XRD analysis revealed that there are no other phases exist in the synthesized powder, evinced single phase of HA and a trend shows an increase of cristallinity with increase of sodium dopant concentration. While the TEM images showed evidence that the particle sizes were bigger with the increasing sodium concentration, showing the effect of sodium dopant on the densification of the powder.


1993 ◽  
Vol 28 (10) ◽  
pp. 2774-2778 ◽  
Author(s):  
K. Igarashi ◽  
K. Tajiri ◽  
T. Asahina ◽  
M. Kosaka ◽  
Y. Iwadate ◽  
...  

2019 ◽  
Vol 33 (10) ◽  
pp. 1950081 ◽  
Author(s):  
Madeeha Riaz ◽  
Rehana Zia ◽  
Snudia Aslam ◽  
Alliya Qamar ◽  
Tousif Hussain ◽  
...  

In this paper, low temperature, economical sol–gel combustion method was adopted to synthesize wollastonite ceramic. Calcium nitrate tetrahydrate and tetraethyl orthosilicate were taken as source for Ca and Si, while citric acid and nitric acid were used as chelating/combustion agents. The yielded powder calcined at 600[Formula: see text]C for 4 h was characterized by FTIR, XRD and SEM techniques. Results showed that the citrate combustion method was the most efficient method to prepare wollastonite at low temperature. Moreover, in vitro bioactivity test performed in simulated body fluid (SBF) showed good bioactivity of synthesized wollastonite ceramics.


2013 ◽  
Vol 777 ◽  
pp. 15-18 ◽  
Author(s):  
Jiu Xu Liu ◽  
Feng Wang ◽  
Jian Xing Shen ◽  
Qi Hui Lai ◽  
Ying Gai

nanohydroxyapatite (nanoHA) powders were prepared by liquid phase precipitation method, using diammonium hydrogen phosphate and calcium nitrate tetrahydrate as raw materials. It was studied that the prepared nanoHA powders not sintered and sintered at 800°C to adsorption of Cu2+ and Pb2+ in aqueous solutions, respectively. The structure and size of nanoHA powders was investigated by X-ray diffraction (XRD) and the concentrations of Cu2+and Pb2+ in aqueous solutions were tested by inductively coupled plasma emission spectrometer. The results revealed that the nanoHA powders have obvious absorption function for Cu2+ and Pb2+ in aqueous solutions. In addition, the absorption ratio was affected by the size of nanoHA.


2010 ◽  
Vol 13 (1-2) ◽  
pp. 85 ◽  
Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Bhavini Patel ◽  
L.M. Manocha

<p>Hydroxyapatite (HAp) is a unique material having high adsorption capacity of heavy metals, high ion exchange capacity, high biological compatibility, low water solubility, high stability under reducing and oxidizing conditions, availability and low cost. Hydroxyapatite nanoparticles have been synthesized by Sol-gel method using Calcium nitrate tetrahydrate [Ca(NO<sub>3</sub>)<sub>2</sub>•4H<sub>2</sub>O] and Phosphorus pentaoxide (P<sub>2</sub>O<sub>5</sub>) as starting reactants. The addition of Phosphorus pentaoxide to Calcium nitrate tetrahydrate was carried out slowly with simultaneous stirring. After addition, solution was aged for 10 minutes for maturation. The precipitate was dried at 80 °C overnight and further heat treated at 550 °C for 2 hours. The dried and calcined particles were characterized by X-ray diffractometry, Fourier transform infra-red spectroscopy and Thermo gravimetric analysis. The particle size and morphology were studied using transmission electron microscopy. TEM examination of the treated powders displayed particles of polygon morphology with dimensions 20-50 nm in length. The FT-IR spectra for sample confirmed the formation of hydroxyapatite.</p>


2018 ◽  
Vol 24 (8) ◽  
pp. 5523-5526 ◽  
Author(s):  
B Shalini ◽  
A. Ruban Kumar ◽  
A. Mary Saral

Hydroxyapatite (HAp) is the most widely accepted biomaterial for the repair and reconstruction of bone tissue defects. The current study is based on HAp was synthesized using sol–gel method. The drug was loaded in presence and absence of gelatin with pure HAp. Precursors like calcium nitrate tetrahydrate and diammonium hydrogen orthophosphate were used and ammonia solution was added to maintain the pH value at 10.5 throughout the reaction. The synthesized HAp, drug loaded HAp and drug loaded HAp with gelatin were characterized using PXRD, FTIR, SEM, Drug loading, drug release studies. Results shows that the average crystallite size of the prepared HAp and drug loaded HAp with gelatin are 30 to 60 nm and 100 to 300 nm respectively was calculated using PXRD and morphology of pure HAp and drug loaded HAp with polymer was found using SEM. Drug loading and release percentage was calculated.


2006 ◽  
Vol 309-311 ◽  
pp. 317-320 ◽  
Author(s):  
Ill Yong Kim ◽  
Chikara Ohtsuki ◽  
Masanobu Kamitakahara ◽  
Masao Tanihara ◽  
S.B. Cho

CaO-SiO2 gels for bioactive organic-inorganic composites were prepared from tetraethoxysilane (TEOS) and calcium nitrate tetrahydrate (Ca(NO3)2⋅4H2O) by a sol-gel method with the addition of polyethylene glycol (PEG) and methacryloxypropyltrimethoxysilane (MPS). The effects of PEG and MPS on morphology and bioactivity of the gel were investigated. The samples with the nominal compositions of Ca(NO3)2:TEOS:MPS = 30:70:0 and 30:63:7 (in molar ratio) were prepared with or without coexistence of PEG at a molar ratio of (TEOS+MPS):PEG = 70:0.16. Spherical powders were obtained regardless of the addition of MPS after removal of PEG by washing, whereas the samples prepared without PEG gave crack-free bulk bodies. Incorporation of MPS was confirmed form the results of Fourier transform infrared spectroscopy (FT-IR). All the samples, regardless of addition of PEG and MPS, formed apatite on their surfaces in simulated body fluid (SBF), when washing time was 3 h during the preparation. These results show that the bioactive spherical powder of CaO-SiO2 gel modified with MPS can be obtained by the present method. It is expected to induce the increase of the chemical bonding with surrounding organic matrix when it was used as fillers for composite materials.


2007 ◽  
Vol 361-363 ◽  
pp. 693-696 ◽  
Author(s):  
Yasuto Hoshikawa ◽  
Eiichi Yasuda ◽  
Takamasa Onoki ◽  
Masaru Akao ◽  
Yasuhiro Tanabe

Titanium (Ti) and its alloy have sufficient mechanical properties to be utilized as artificial hip joints and article teeth. However, they have no bioactivity. In this work, we prepared bioactive coatings on Ti by sol-gel techniques. The coatings had a double layered structure. Underlying layer was methylsiloxane (MS) consisted of methyltriethoxysilane (MTES). Top layer was MS-Ca-Nb-Ta hybrid composed of MTES, calcium nitrate tetrahydrate, pentaethoxy-niobium and pentaethoxy-tantalum. The coating exhibited formation of bone-like apatite in SBF immersion test. Adhesive strength of the coating was found to be 1.8 MPa.


2013 ◽  
Vol 284-287 ◽  
pp. 41-45
Author(s):  
Chich Kuan Chen

The bioactive properties of hydroxyapatite [HA, Ca10(PO4)6(OH)2] have been demonstrated to be akin to osseous tissue, and provide quick fixation in prosthesis and orthopedics. In this study, sol-gel preparation of hydroxyapatite were arranged for Ca/P=1.67 molar ratio in calcium nitrate [Ca(NO)3.4H2O ] and triethylphosphate [TEP, C6H15PO4] and then dilute in the solvent of ethylene glycol mono-methyl ether [HOCH2CH2OCH3]. Consequently, sintering process was carried out at different temperature for various sintering time to materialize this inorganic polycrystalline phosphate. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are applied to investigate the as dried amorphous and calcined hydroxyapatite. Results reveal calcinations at 1000oC prolonged for 30 minutes in air can exhibit crystalline hydroxyapatite.


Sign in / Sign up

Export Citation Format

Share Document