Microstructure evolution in multilayer c-TiAlN/TiN coatings during spinodal decomposition — A phase-field study

2016 ◽  
Vol 01 (01) ◽  
pp. 1650002 ◽  
Author(s):  
Jingjing Zhou ◽  
Lijun Zhang ◽  
Li Chen ◽  
Hong Wu ◽  
Yong Du

By means of the combined model, i.e., the phase-field model with finite interface dissipation in combination with the modified Cahn–Hilliard model, together with the materials parameters comprehensively verified in monolithic c-TiAlN coatings, the microstructure evolution in multilayer c-Ti[Formula: see text]Al[Formula: see text]N/TiN coatings annealed at [Formula: see text]C was quantitatively simulated by directly comparing with the experimental data. The sharp interface between c-TiN and c-Ti[Formula: see text]Al[Formula: see text]N layers in the as-deposited state was found to change into a diffuse one, which can act as highly effective obstacles against dislocation motion. Moreover, the simulations indicate that the spinodal decomposition occurs in the Ti[Formula: see text]Al[Formula: see text]N layer and the decomposed layer becomes thinner, which is in good agreement with the experimental observation. In addition, the effect of modulation period and modulation ratio on microstructure evolution in c-Ti[Formula: see text]Al[Formula: see text]N/TiN coating was further studied. The relatively smaller modulation period can generate more layers in the real scale of coatings, which can help to strengthen the coatings due to refinement of grains and restriction of dislocations. As for the modulation ratio, when the value decreases from 5:1 to 1:1, Ti atoms in the decomposed layer disappear faster. A further extension into a larger-sized simulation was also performed.

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Mohammad Amin Jabbareh ◽  
Hamid Assadi

There is a growing interest in laser melting processes, e.g., for metal additive manufacturing. Modelling and numerical simulation can help to understand and control microstructure evolution in these processes. However, standard methods of microstructure simulation are generally not suited to model the kinetic effects associated with rapid solidification in laser processing, especially for material systems that contain intermetallic phases. In this paper, we present and employ a tailored phase-field model to demonstrate unique features of microstructure evolution in such systems. Initially, the problem of anomalous partitioning during rapid solidification of intermetallics is revisited using the tailored phase-field model, and the model predictions are assessed against the existing experimental data for the B2 phase in the Ni-Al binary system. The model is subsequently combined with a Potts model of grain growth to simulate laser processing of polycrystalline alloys containing intermetallic phases. Examples of simulations are presented for laser processing of a nickel-rich Ni-Al alloy, to demonstrate the application of the method in studying the effect of processing conditions on various microstructural features, such as distribution of intermetallic phases in the melt pool and the heat-affected zone. The computational framework used in this study is envisaged to provide additional insight into the evolution of microstructure in laser processing of industrially relevant materials, e.g., in laser welding or additive manufacturing of Ni-based superalloys.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1373
Author(s):  
Yueh-Yu Lin ◽  
Felix Schleifer ◽  
Markus Holzinger ◽  
Na Ta ◽  
Birgit Skrotzki ◽  
...  

The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ′′ precipitates in Ni-based alloys and tetragonal θ′ precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ′′ precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates’ in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ′′-precipitates can be quantitatively reproduced by the phase-field model.


2011 ◽  
Vol 415-417 ◽  
pp. 1482-1485
Author(s):  
Chuang Gao Huang ◽  
Ying Jun Gao ◽  
Li Lin Huang ◽  
Jun Long Tian

The second phase nucleation and precipitation around the edge dislocation are studied using phase-field method. A new free energy function is established. The simulation results are in good agreement with that of theory of dislocation and theory of non-uniform nucleation.


2005 ◽  
Vol 87 (22) ◽  
pp. 221910 ◽  
Author(s):  
X. H. Guo ◽  
San-Qiang Shi ◽  
X. Q. Ma

2021 ◽  
pp. 2150374
Author(s):  
Lifei Du ◽  
Runbo Tian ◽  
Tiantian Shi ◽  
Youqi Cao

The spinodal decomposition in Fe-40at.%Cr binary alloy is numerically studied by implementing the phase-field model based on Cahn–Hilliard equation. Effects of different temperature gradients on the solute distributing characteristics during the spinodal decomposition are investigated. In the system with a temperature gradient, the phase decomposition happens gradually from low temperature to high temperature, and a metastable stratification is achieved with specified temperature distribution. The critical temperature and corresponding temperature gradient are specified for the obvious solute stratification in the binary Fe–Cr alloy. The kinetics of the solute diffusion during the spinodal decomposition is discussed to reveal the liquid phase stratification induced by the anisotropic diffusion with the nonuniform temperature field. Therefore, tailoring the heat treatment during the spinodal decomposition in Fe–Cr binary alloys might be an efficient way to obtain nanometer coherent microstructures with specified solute distribution.


2011 ◽  
Vol 704-705 ◽  
pp. 1410-1415 ◽  
Author(s):  
Yong Qiang Long ◽  
Ping Liu ◽  
Yong Liu ◽  
Shu Guo Jiao ◽  
Bao Hong Tian

Based on Cahn-Hilliard nonlinear diffusion equation, the phase field model has been established for ternary alloy spinodal decomposition, which directly couples with Calphad thermodynamics and dynamics calculation and takes into account the effect of the coherent elastic energy. The simulated microstructures of spinodal decomposition were carried out in the isothermally-aged of Cu-6at.%Ni-3at.%Si alloy. The results indicate that the spinodal decomposition takes place at the early stage of Cu-6at.%Ni-3at.%Si alloy aging at temperatures of 723K, forming two-phases mixture of Cu-rich and Ni/Si-rich, and the decomposition microstructures are distributed in a semi-interconnected labyrinth-like form. Under the effect of the coherent elastic energy, the decomposition microstructures demonstrate the obvious anisotropic characteristics, and present interconnected rectangular stripes aligned along [10] and [01] directions. The growth of the decomposition microstructures is in accordance with the growth law of growth exponentn≈0.29, slightly less than the LSW’s prediction.


2015 ◽  
Vol 817 ◽  
pp. 14-20
Author(s):  
Hai Feng Wang ◽  
Cun Lai ◽  
Xiao Zhang ◽  
Kuang Wang ◽  
Feng Liu

Since the growth velocity can be comparable with or even larger than the solute diffusion velocity in the bulk phases, modeling of rapid solidification with non-equilibrium solute diffusion becomes quite an important topic. In this paper, an effective mobility approach was proposed to derive the current phase field model (PFM). In contrast with the previous PFMs that were derived by the so-called kinetic energy approach, diffusionless solidification happens not only in the bulk phases but also inside the interface when the growth velocity is equal to the solute diffusion velocity in liquid. A good agreement between the model predictions and experimental results is obtained for rapid solidification of Si-9at.%As alloy.


Sign in / Sign up

Export Citation Format

Share Document