Enhanced Electron Mobility in AlGaN/InGaN/AlGaN Double-Heterostructures by Piezoelectric Effect

1999 ◽  
Vol 38 (Part 2, No. 7B) ◽  
pp. L799-L801 ◽  
Author(s):  
Narihiko Maeda ◽  
Tadashi Saitoh ◽  
Kotaro Tsubaki ◽  
Toshio Nishida ◽  
Naoki Kobayashi
2021 ◽  
pp. 1-1
Author(s):  
Junya Yaita ◽  
Koichi Fukuda ◽  
Atsushi Yamada ◽  
Takuya Iwasaki ◽  
Shu Nakaharai ◽  
...  

2013 ◽  
Vol 1561 ◽  
Author(s):  
Cheng-Ying Huang ◽  
Jeremy J. M. Law ◽  
Hong Lu ◽  
Mark J. W. Rodwell ◽  
Arthur C. Gossard

ABSTRACTWe investigated AlAs0.56Sb0.44 epitaxial layers lattice-matched to InP grown by molecular beam epitaxy (MBE). Silicon (Si) and tellurium (Te) were studied as n-type dopants in AlAs0.56Sb0.44 material. Similar to most Sb-based materials, AlAs0.56Sb0.44 demonstrates a maximum active carrier concentration around low-1018 cm-3 when using Te as a dopant. We propose the use of a heavily Si-doped InAlAs layer embedded in the AlAsSb barrier as a modulation-doped layer. The In0.53Ga0.47As/AlAs0.56Sb0.44 double heterostructures with a 10 nm InGaAs well show an electron mobility of about 9400 cm2/V・s at 295 K and 32000 cm2/V・s at 46 K. A thinner 5 nm InGaAs well has an electron mobility of about 4300 cm2/V・s at 295 K. This study demonstrates that AlAs0.56Sb0.44 is a promising barrier material for highly scaled InGaAs MOSFETs and HEMTs.


2011 ◽  
Vol 5 (1) ◽  
pp. 011002 ◽  
Author(s):  
Kai Cheng ◽  
Hu Liang ◽  
Marleen Van Hove ◽  
Karen Geens ◽  
Brice De Jaeger ◽  
...  

2012 ◽  
Vol 112 (2) ◽  
pp. 023707 ◽  
Author(s):  
Fanna Meng ◽  
Jincheng Zhang ◽  
Hao Zhou ◽  
Juncai Ma ◽  
Junshuai Xue ◽  
...  

Author(s):  
N.A. Bert ◽  
A.O. Kosogov

The very thin (<100 Å) InGaAsP layers were grown not only by molecular beam epitaxy and metal-organic chemical vapor deposition but recently also by simple liquid phase epitaxy (LPE) technique. Characterization of their thickness, interfase abruptness and lattice defects is important and requires TEM methods to be used.The samples were InGaAsP/InGaP double heterostructures grown on (111)A GaAs substrate. The exact growth conditions are described in Ref.1. The salient points are that the quarternary layers were being grown at 750°C during a fast movement of substrate and a convection caused in the melt by that movement was eliminated. TEM cross-section specimens were prepared by means of conventional procedure. The studies were conducted in EM 420T and JEM 4000EX instruments.The (200) dark-field cross-sectional imaging is the most appropriate TEM technique to distinguish between individual layers in 111-v semiconductor heterostructures.


2020 ◽  
pp. 3-11
Author(s):  
S.M. Afonin

Structural-parametric models, structural schemes are constructed and the transfer functions of electro-elastic actuators for nanomechanics are determined. The transfer functions of the piezoelectric actuator with the generalized piezoelectric effect are obtained. The changes in the elastic compliance and rigidity of the piezoactuator are determined taking into account the type of control. Keywords electro-elastic actuator, piezo actuator, structural-parametric model, transfer function, parametric structural scheme


Sign in / Sign up

Export Citation Format

Share Document