Molecular Hydrogen in Amorphous Silicon with High Internal Stress

2007 ◽  
Vol 46 (8A) ◽  
pp. 5050-5052 ◽  
Author(s):  
Parvaneh Danesh ◽  
Blagoy Pantchev ◽  
Bernd Schmidt ◽  
Dieter Grambole
1999 ◽  
Vol 557 ◽  
Author(s):  
Chris G. Van De Walle ◽  
Blair Tuttle

AbstractWe present an overview of recent results for hydrogen interactions with amorphous silicon (a-Si), based on first- principles calculations. We review the current understanding regarding molecular hydrogen, and show that H2 molecules are far less inert than previously assumed. We then discuss results for motion of hydrogen through the material, as relating to diffusion and defect formation. We present a microscopic mechanism for hydrogen-hydrogen exchange, and examine the metastable ≠ SiH2 complex formed during the exchange process. We also discuss the enhanced stability of Si-D compared to Si-H bonds, which may provide a means of suppressing light-induced defect generation.


1991 ◽  
Vol 219 ◽  
Author(s):  
Gaorong Han ◽  
Jianmin Qiao ◽  
Piyi Du ◽  
Zhonghua Jiang ◽  
Zishang Ding

ABSTRACTWe have presented ESR and PAS measurements for a series of a-SiS:H and a-Si: H films deposited by glow discharge at different parameters. The spin density in a-SiS:H alloys measured by ESR is essentially independent of the sulphur content, while the density of defects measured by PAS increases significantly with the increasing of sulphur content. The ESR signals in a-SiS:H alloys strongly depend on both annealing and illumination. The spin density increases up to 540°C and then decreases with raising annealing temperature for a-SiS:H and a-Si:H alloys. The results suggest that some new defects such as molecular hydrogen and microvoids are appeared when addition of sulphur to a-Si:H films.


2011 ◽  
Vol 483 ◽  
pp. 3-8
Author(s):  
Li Qun Du ◽  
Qi Jia Wang ◽  
Xiao Lei Zhang

SU-8 photoresist has received a lot of attention in the MEMS field because of its excellent lithography properties. However, its high internal stress affects the overall pattern quality of the micro structures. The purpose of this work is to reduce the internal stress in SU-8 micro structure by ultrasonic stress relief technology. The stress relief mechanism of SU-8 micro structure was presented. The effect of ultrasonic stress relief on SU-8 micro structure was studied by experiments. The experimental results show that the internal stress in SU-8 micro structures can be reduced by ultrasonic stress relief technology.


2009 ◽  
Vol 80 (7) ◽  
Author(s):  
Fatiha Kail ◽  
Jordi Farjas ◽  
Pere Roura ◽  
Pere Roca i Cabarrocas

2000 ◽  
Vol 76 (5) ◽  
pp. 565-567 ◽  
Author(s):  
Tining Su ◽  
P. C. Taylor ◽  
Shenlin Chen ◽  
R. S. Crandall ◽  
A. H. Mahan

2015 ◽  
Vol 1757 ◽  
Author(s):  
Parthapratim Biswas ◽  
David Alan Drabold

ABSTRACTIn this paper we report the structure of voids in several thousand atom models of hydrogenated amorphous silicon. The models are produced by jointly employing experimental information from Smets and coworkers [1] and first principles simulations [2]. We demonstrate the existence of a useful correlation between the presence of large irreducible rings and the voids in hydrogenated amorphous silicon networks. Molecular hydrogen is observed in the models, and discussed.


1998 ◽  
Vol 553 ◽  
Author(s):  
H. Hirai ◽  
T. Tomita ◽  
F. Yoshida ◽  
H. Nakashima

AbstractFine decagonal phase lamellae-bearing icosahedral Al-Pd-Mn quasicrystals were tested compressionally at temperatures of 997 to 1073 K and initial strain rate of 3 × 10−5. to I × 10−4 S−1, and stress relaxation tests were performed at various stages of deformation. The results confirmed the thermally activated nature of deformation, and the stress exponent of strain rate was around 4. Internal stress for deformation estimated by Kikuchi's method reached 50 to 90 % of applied stress. The effective stress exponent of strain rate was revealed to be about 1.3. At least a part of high internal stress was attributable to complicated dislocation microstructure.


2016 ◽  
Vol 16 (4) ◽  
pp. 208-216
Author(s):  
M. Okayasu ◽  
S. Wu ◽  
T. Tanimoto ◽  
S. Takeuchi

Abstract Investigation of the tensile and fatigue properties of cast magnesium alloys, created by the heated mold continuous casting process (HMC), was conducted. The mechanical properties of the Mg-HMC alloys were overall higher than those for the Mg alloys, made by the conventional gravity casting process (GC), and especially excellent mechanical properties were obtained for the Mg97Y2Zn1-HMC alloy. This was because of the fine-grained structure composed of the α-Mg phases with the interdendritic LPSO phase. Such mechanical properties were similar levels to those for conventional cast aluminum alloy (Al84.7Si10.5Cu2.5Fe1.3Zn1 alloys: ADC12), made by the GC process. Moreover, the tensile properties (σUTS and εf) and fatigue properties of the Mg97Y2Zn1-HMC alloy were about 1.5 times higher than that for the commercial Mg90Al9Zn1-GC alloy (AZ91). The high correlation rate between tensile properties and fatigue strength (endurance limit: σl) was obtained. With newly proposed etching technique, the residual stress in the Mg97Y2Zn1 alloy could be revealed, and it appeared that the high internal stress was severely accumulated in and around the long-period stacking-order phases (LPSO). This was made during the solidification process due to the different shrinkage rate between α-Mg and LPSO. In this etching technique, micro-cracks were observed on the sample surface, and amount of micro-cracks (density) could be a parameter to determine the severity of the internal stress, i.e., a large amount to micro-cracks is caused by the high internal stress.


Sign in / Sign up

Export Citation Format

Share Document